BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 3569297)

  • 1. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics.
    Vos K; van Hoek A; Visser AJ
    Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved fluorescence and anisotropy decay of the tryptophan in adrenocorticotropin-(1-24).
    Ross JB; Rousslang KW; Brand L
    Biochemistry; 1981 Jul; 20(15):4361-9. PubMed ID: 6269589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on human serum albumin and methemalbumin: optical, steady-state, and picosecond time-resolved fluorescence studies, and kinetics of substrate oxidation by methemalbumin.
    Kamal JK; Behere DV
    J Biol Inorg Chem; 2002 Mar; 7(3):273-83. PubMed ID: 11935351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between internal motion and emission kinetics of tryptophan residues in proteins.
    Kouyama T; Kinosita K; Ikegami A
    Eur J Biochem; 1989 Jul; 182(3):517-21. PubMed ID: 2753033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase.
    Ross JB; Schmidt CJ; Brand L
    Biochemistry; 1981 Jul; 20(15):4369-77. PubMed ID: 7025898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of the fluorescence from tryptophan in melittin.
    Tran CD; Beddard GS
    Eur Biophys J; 1985; 13(1):59-64. PubMed ID: 4076050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation.
    Lakowicz JR; Gryczynski I
    Biophys Chem; 1992 Nov; 45(1):1-6. PubMed ID: 1467440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosecond segmental mobilities of tryptophan residues in proteins observed by lifetime-resolved fluorescence anisotropies.
    Lakowicz JR; Freshwater G; Weber G
    Biophys J; 1980 Oct; 32(1):591-601. PubMed ID: 7248463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence lifetime and spectral study of the acid expansion of bovine serum albumin.
    Brewer JM; Bastiaens P; Lee J
    Biophys Chem; 1987 Oct; 28(1):77-88. PubMed ID: 3689873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics.
    Lakowicz JR; Cherek H; Gryczynski I; Joshi N; Johnson ML
    Biophys J; 1987 May; 51(5):755-68. PubMed ID: 3593873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins.
    Volkmer A; Subramaniam V; Birch DJ; Jovin TM
    Biophys J; 2000 Mar; 78(3):1589-98. PubMed ID: 10692343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fluorescence decay of tryptophan residues in native and denatured proteins.
    Grinvald A; Steinberg IZ
    Biochim Biophys Acta; 1976 Apr; 427(2):663-78. PubMed ID: 5134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Similarity of Spectral Profiles with Individual Fluorescence Lifetime of Tryptophan in Proteins of Different Structure].
    Nemtseva EV; Lashchuk OO; Gerasimova MA
    Biofizika; 2016; 61(2):231-8. PubMed ID: 27192823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constrained analysis of fluorescence anisotropy decay:application to experimental protein dynamics.
    Feinstein E; Deikus G; Rusinova E; Rachofsky EL; Ross JB; Laws WR
    Biophys J; 2003 Jan; 84(1):599-611. PubMed ID: 12524313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational freedom of tryptophan residues in proteins and peptides.
    Lakowicz JR; Maliwal BP; Cherek H; Balter A
    Biochemistry; 1983 Apr; 22(8):1741-52. PubMed ID: 6849881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time resolved spectroscopy of tryptophyl fluorescence of yeast 3-phosphoglycerate kinase.
    Privat JP; Wahl P; Auchet JC; Pain RH
    Biophys Chem; 1980 Apr; 11(2):239-48. PubMed ID: 6989411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanosecond dynamics of horse heart apocytochrome c in aqueous solution as studied by time-resolved fluorescence of the single tryptophan residue (Trp-59).
    Vincent M; Brochon JC; Merola F; Jordi W; Gallay J
    Biochemistry; 1988 Nov; 27(24):8752-61. PubMed ID: 2853969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.