These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 35693000)
1. A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches. Ma P; Li C; Rahaman MM; Yao Y; Zhang J; Zou S; Zhao X; Grzegorzek M Artif Intell Rev; 2023; 56(2):1627-1698. PubMed ID: 35693000 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Zhang J; Li C; Rahaman MM; Yao Y; Ma P; Zhang J; Zhao X; Jiang T; Grzegorzek M Artif Intell Rev; 2022; 55(4):2875-2944. PubMed ID: 34602697 [TBL] [Abstract][Full Text] [Related]
3. Advances Towards Automatic Detection and Classification of Parasites Microscopic Images Using Deep Convolutional Neural Network: Methods, Models and Research Directions. Kumar S; Arif T; Alotaibi AS; Malik MB; Manhas J Arch Comput Methods Eng; 2023; 30(3):2013-2039. PubMed ID: 36531561 [TBL] [Abstract][Full Text] [Related]
4. Tile-based microscopic image processing for malaria screening using a deep learning approach. Shewajo FA; Fante KA BMC Med Imaging; 2023 Mar; 23(1):39. PubMed ID: 36949382 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning and Deep Learning Based Computational Approaches in Automatic Microorganisms Image Recognition: Methodologies, Challenges, and Developments. Rani P; Kotwal S; Manhas J; Sharma V; Sharma S Arch Comput Methods Eng; 2022; 29(3):1801-1837. PubMed ID: 34483651 [TBL] [Abstract][Full Text] [Related]
6. Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Zhang J; Li C; Yin Y; Zhang J; Grzegorzek M Artif Intell Rev; 2023; 56(2):1013-1070. PubMed ID: 35528112 [TBL] [Abstract][Full Text] [Related]
7. EMDS-7: Environmental microorganism image dataset seventh version for multiple object detection evaluation. Yang H; Li C; Zhao X; Cai B; Zhang J; Ma P; Zhao P; Chen A; Jiang T; Sun H; Teng Y; Qi S; Huang X; Grzegorzek M Front Microbiol; 2023; 14():1084312. PubMed ID: 36891388 [TBL] [Abstract][Full Text] [Related]
8. Deep learning approaches for breast cancer detection in histopathology images: A review. Priya C V L; V G B; B R V; Ramachandran S Cancer Biomark; 2024; 40(1):1-25. PubMed ID: 38517775 [TBL] [Abstract][Full Text] [Related]
9. A comprehensive survey of recent trends in deep learning for digital images augmentation. Khalifa NE; Loey M; Mirjalili S Artif Intell Rev; 2022; 55(3):2351-2377. PubMed ID: 34511694 [TBL] [Abstract][Full Text] [Related]
10. Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space. Fallahpoor M; Chakraborty S; Pradhan B; Faust O; Barua PD; Chegeni H; Acharya R Comput Methods Programs Biomed; 2024 Jan; 243():107880. PubMed ID: 37924769 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound Image Analysis with Vision Transformers-Review. Vafaeezadeh M; Behnam H; Gifani P Diagnostics (Basel); 2024 Mar; 14(5):. PubMed ID: 38473014 [TBL] [Abstract][Full Text] [Related]
12. A state-of-the-art survey of artificial neural networks for Whole-slide Image analysis: From popular Convolutional Neural Networks to potential visual transformers. Hu W; Li X; Li C; Li R; Jiang T; Sun H; Huang X; Grzegorzek M; Li X Comput Biol Med; 2023 Jul; 161():107034. PubMed ID: 37230019 [TBL] [Abstract][Full Text] [Related]
13. EMDS-5: Environmental Microorganism image dataset Fifth Version for multiple image analysis tasks. Li Z; Li C; Yao Y; Zhang J; Rahaman MM; Xu H; Kulwa F; Lu B; Zhu X; Jiang T PLoS One; 2021; 16(5):e0250631. PubMed ID: 33979356 [TBL] [Abstract][Full Text] [Related]
14. Trends in forensic microbiology: From classical methods to deep learning. Yuan H; Wang Z; Wang Z; Zhang F; Guan D; Zhao R Front Microbiol; 2023; 14():1163741. PubMed ID: 37065115 [TBL] [Abstract][Full Text] [Related]
15. Crop-saving with AI: latest trends in deep learning techniques for plant pathology. Salman Z; Muhammad A; Piran MJ; Han D Front Plant Sci; 2023; 14():1224709. PubMed ID: 37600194 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge. Song Y; Ren S; Lu Y; Fu X; Wong KKL Comput Methods Programs Biomed; 2022 Jun; 220():106821. PubMed ID: 35487181 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review. Baig R; Bibi M; Hamid A; Kausar S; Khalid S Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Nosema Cells Identification for Microscopic Images. Dghim S; Travieso-González CM; Burget R Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924940 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning Approaches for Automatic Localization in Medical Images. Alaskar H; Hussain A; Almaslukh B; Vaiyapuri T; Sbai Z; Dubey AK Comput Intell Neurosci; 2022; 2022():6347307. PubMed ID: 35814554 [TBL] [Abstract][Full Text] [Related]
20. Recent developments in denoising medical images using deep learning: An overview of models, techniques, and challenges. Nazir N; Sarwar A; Saini BS Micron; 2024 May; 180():103615. PubMed ID: 38471391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]