BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35693120)

  • 1. Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline.
    Bauer FM; Lärm L; Morandage S; Lobet G; Vanderborght J; Vereecken H; Schnepf A
    Plant Phenomics; 2022; 2022():9758532. PubMed ID: 35693120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RootPainter: deep learning segmentation of biological images with corrective annotation.
    Smith AG; Han E; Petersen J; Olsen NAF; Giese C; Athmann M; Dresbøll DB; Thorup-Kristensen K
    New Phytol; 2022 Oct; 236(2):774-791. PubMed ID: 35851958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installation and imaging of thousands of minirhizotrons to phenotype root systems of field-grown plants.
    Rajurkar AB; McCoy SM; Ruhter J; Mulcrone J; Freyfogle L; Leakey ADB
    Plant Methods; 2022 Mar; 18(1):39. PubMed ID: 35346269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
    Pound MP; Atkinson JA; Townsend AJ; Wilson MH; Griffiths M; Jackson AS; Bulat A; Tzimiropoulos G; Wells DM; Murchie EH; Pridmore TP; French AP
    Gigascience; 2017 Oct; 6(10):1-10. PubMed ID: 29020747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer vision and machine learning enabled soybean root phenotyping pipeline.
    Falk KG; Jubery TZ; Mirnezami SV; Parmley KA; Sarkar S; Singh A; Ganapathysubramanian B; Singh AK
    Plant Methods; 2020; 16():5. PubMed ID: 31993072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. As good as human experts in detecting plant roots in minirhizotron images but efficient and reproducible: the convolutional neural network "RootDetector".
    Peters B; Blume-Werry G; Gillert A; Schwieger S; von Lukas UF; Kreyling J
    Sci Rep; 2023 Jan; 13(1):1399. PubMed ID: 36697423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing fine root research with minirhizotrons.
    Johnson MG; Tingey DT; Phillips DL; Storm MJ
    Environ Exp Bot; 2001 Jun; 45(3):263-289. PubMed ID: 11323033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput
    Shen C; Liu L; Zhu L; Kang J; Wang N; Shao L
    Front Plant Sci; 2020; 11():576791. PubMed ID: 33193519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digging roots is easier with AI.
    Han E; Smith AG; Kemper R; White R; Kirkegaard JA; Thorup-Kristensen K; Athmann M
    J Exp Bot; 2021 Jun; 72(13):4680-4690. PubMed ID: 33884416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Root Length Estimation from Images Acquired In Situ without Segmentation.
    Khoroshevsky F; Zhou K; Chemweno S; Edan Y; Bar-Hillel A; Hadar O; Rewald B; Baykalov P; Ephrath JE; Lazarovitch N
    Plant Phenomics; 2024; 6():0132. PubMed ID: 38230354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RhizoVision Explorer: open-source software for root image analysis and measurement standardization.
    Seethepalli A; Dhakal K; Griffiths M; Guo H; Freschet GT; York LM
    AoB Plants; 2021 Dec; 13(6):plab056. PubMed ID: 34804466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semantic segmentation of plant roots from RGB (mini-) rhizotron images-generalisation potential and false positives of established methods and advanced deep-learning models.
    Baykalov P; Bussmann B; Nair R; Smith AG; Bodner G; Hadar O; Lazarovitch N; Rewald B
    Plant Methods; 2023 Nov; 19(1):122. PubMed ID: 37932745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of cotton roots in high-resolution minirhizotron images based on improved OCRNet.
    Huang Y; Yan J; Zhang Y; Ye W; Zhang C; Gao P; Lv X
    Front Plant Sci; 2023; 14():1147034. PubMed ID: 37235030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepCob: precise and high-throughput analysis of maize cob geometry using deep learning with an application in genebank phenomics.
    Kienbaum L; Correa Abondano M; Blas R; Schmid K
    Plant Methods; 2021 Aug; 17(1):91. PubMed ID: 34419093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SoilCam: A Fully Automated Minirhizotron using Multispectral Imaging for Root Activity Monitoring.
    Rahman G; Sohag H; Chowdhury R; Wahid KA; Dinh A; Arcand M; Vail S
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32023975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of the three-dimensional root system architecture using an automated rotating imaging system.
    Wu Q; Wu J; Hu P; Zhang W; Ma Y; Yu K; Guo Y; Cao J; Li H; Li B; Yao Y; Cao H; Zhang W
    Plant Methods; 2023 Feb; 19(1):11. PubMed ID: 36732764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmentation of roots in soil with U-Net.
    Smith AG; Petersen J; Selvan R; Rasmussen CR
    Plant Methods; 2020; 16():13. PubMed ID: 32055251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.
    Lee U; Chang S; Putra GA; Kim H; Kim DH
    PLoS One; 2018; 13(4):e0196615. PubMed ID: 29702690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic discrimination of fine roots in minirhizotron images.
    Zeng G; Birchfield ST; Wells CE
    New Phytol; 2008; 177(2):549-557. PubMed ID: 18042202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating root system phenotyping of seedlings through a computer-assisted processing pipeline.
    Dupuy LX; Wright G; Thompson JA; Taylor A; Dekeyser S; White CP; Thomas WTB; Nightingale M; Hammond JP; Graham NS; Thomas CL; Broadley MR; White PJ
    Plant Methods; 2017; 13():57. PubMed ID: 28717384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.