These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35693120)

  • 21. Semi-automated Root Image Analysis (saRIA).
    Narisetti N; Henke M; Seiler C; Shi R; Junker A; Altmann T; Gladilin E
    Sci Rep; 2019 Dec; 9(1):19674. PubMed ID: 31873104
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping.
    Pound MP; Fozard S; Torres Torres M; Forde BG; French AP
    Plant Methods; 2017; 13():12. PubMed ID: 28286542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods.
    Ullah S; Henke M; Narisetti N; Panzarová K; Trtílek M; Hejatko J; Gladilin E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An image analysis pipeline for automated classification of imaging light conditions and for quantification of wheat canopy cover time series in field phenotyping.
    Yu K; Kirchgessner N; Grieder C; Walter A; Hund A
    Plant Methods; 2017; 13():15. PubMed ID: 28344634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RhizoVision Crown: An Integrated Hardware and Software Platform for Root Crown Phenotyping.
    Seethepalli A; Guo H; Liu X; Griffiths M; Almtarfi H; Li Z; Liu S; Zare A; Fritschi FB; Blancaflor EB; Ma XF; York LM
    Plant Phenomics; 2020; 2020():3074916. PubMed ID: 33313547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining semi-automated image analysis techniques with machine learning algorithms to accelerate large-scale genetic studies.
    Atkinson JA; Lobet G; Noll M; Meyer PE; Griffiths M; Wells DM
    Gigascience; 2017 Oct; 6(10):1-7. PubMed ID: 29020748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fully-automated root image analysis (faRIA).
    Narisetti N; Henke M; Seiler C; Junker A; Ostermann J; Altmann T; Gladilin E
    Sci Rep; 2021 Aug; 11(1):16047. PubMed ID: 34362967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AraDQ: an automated digital phenotyping software for quantifying disease symptoms of flood-inoculated Arabidopsis seedlings.
    Lee JH; Lee U; Yoo JH; Lee TS; Jung JH; Kim HS
    Plant Methods; 2024 Mar; 20(1):44. PubMed ID: 38493119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An improved U-Net-based
    Li Y; Huang Y; Wang M; Zhao Y
    Front Plant Sci; 2023; 14():1115713. PubMed ID: 36998695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RhizoPot platform: A high-throughput
    Zhao H; Wang N; Sun H; Zhu L; Zhang K; Zhang Y; Zhu J; Li A; Bai Z; Liu X; Dong H; Liu L; Li C
    Front Plant Sci; 2022; 13():1004904. PubMed ID: 36247541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning Methods for Automatic Segmentation of Images of Field- and Glasshouse-Based Plants for High-Throughput Phenotyping.
    Okyere FG; Cudjoe D; Sadeghi-Tehran P; Virlet N; Riche AB; Castle M; Greche L; Mohareb F; Simms D; Mhada M; Hawkesford MJ
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning Based Greenhouse Image Segmentation and Shoot Phenotyping (DeepShoot).
    Narisetti N; Henke M; Neumann K; Stolzenburg F; Altmann T; Gladilin E
    Front Plant Sci; 2022; 13():906410. PubMed ID: 35909752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An image-based technique for automated root disease severity assessment using PlantCV.
    Pierz LD; Heslinga DR; Buell CR; Haus MJ
    Appl Plant Sci; 2023; 11(1):e11507. PubMed ID: 36818784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative CMR population imaging on 20,000 subjects of the UK Biobank imaging study: LV/RV quantification pipeline and its evaluation.
    Attar R; Pereañez M; Gooya A; Albà X; Zhang L; de Vila MH; Lee AM; Aung N; Lukaschuk E; Sanghvi MM; Fung K; Paiva JM; Piechnik SK; Neubauer S; Petersen SE; Frangi AF
    Med Image Anal; 2019 Aug; 56():26-42. PubMed ID: 31154149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Construction of a large-scale semi-field facility to study genotypic differences in deep root growth and resources acquisition.
    Svane SF; Jensen CS; Thorup-Kristensen K
    Plant Methods; 2019; 15():26. PubMed ID: 30930953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Automated Image Analysis Pipeline Enables Genetic Studies of Shoot and Root Morphology in Carrot (
    Turner SD; Ellison SL; Senalik DA; Simon PW; Spalding EP; Miller ND
    Front Plant Sci; 2018; 9():1703. PubMed ID: 30542356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spine Explorer: a deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images.
    Huang J; Shen H; Wu J; Hu X; Zhu Z; Lv X; Liu Y; Wang Y
    Spine J; 2020 Apr; 20(4):590-599. PubMed ID: 31759132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Testing deep placement of an
    Chen S; Svane SF; Thorup-Kristensen K
    Plant Methods; 2019; 15():148. PubMed ID: 31827580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Outdoor Plant Segmentation With Deep Learning for High-Throughput Field Phenotyping on a Diverse Wheat Dataset.
    Zenkl R; Timofte R; Kirchgessner N; Roth L; Hund A; Van Gool L; Walter A; Aasen H
    Front Plant Sci; 2021; 12():774068. PubMed ID: 35058948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.