These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35693123)
1. Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images. Zhao K; Wu L; Huang Y; Yao S; Xu Z; Lin H; Wang H; Liang Y; Xu Y; Chen X; Zhao M; Peng J; Huang Y; Liang C; Li Z; Li Y; Liu Z Precis Clin Med; 2021 Mar; 4(1):17-24. PubMed ID: 35693123 [TBL] [Abstract][Full Text] [Related]
2. Construction and validation of a deep learning prognostic model based on digital pathology images of stage III colorectal cancer. Zhou X; Lu Y; Wu Y; Yu Y; Liu Y; Wang C; Zhao Z; Wang C; Gao Z; Li Z; Zhao Y; Cao W Eur J Surg Oncol; 2024 Jul; 50(7):108369. PubMed ID: 38703632 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence for quantifying immune infiltrates interacting with stroma in colorectal cancer. Yang J; Ye H; Fan X; Li Y; Wu X; Zhao M; Hu Q; Ye Y; Wu L; Li Z; Zhang X; Liang C; Wang Y; Xu Y; Li Q; Yao S; You D; Zhao K; Liu Z J Transl Med; 2022 Oct; 20(1):451. PubMed ID: 36195956 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer. Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706 [TBL] [Abstract][Full Text] [Related]
5. Artificial intelligence-assisted analysis for tumor-immune interaction within the invasive margin of colorectal cancer. Ye Y; Wu X; Wang H; Ye H; Zhao K; Yao S; Liu Z; Zhu Y; Zhang Q; Liang C Ann Med; 2023 Dec; 55(1):2215541. PubMed ID: 37224471 [TBL] [Abstract][Full Text] [Related]
6. A deep learning quantified stroma-immune score to predict survival of patients with stage II-III colorectal cancer. Xu Z; Li Y; Wang Y; Zhang S; Huang Y; Yao S; Han C; Pan X; Shi Z; Mao Y; Xu Y; Huang X; Lin H; Chen X; Liang C; Li Z; Zhao K; Zhang Q; Liu Z Cancer Cell Int; 2021 Oct; 21(1):585. PubMed ID: 34717647 [TBL] [Abstract][Full Text] [Related]
7. An artificial intelligence-based ecological index for prognostic evaluation of colorectal cancer. Chen Q; Cai M; Fan X; Liu W; Fang G; Yao S; Xu Y; Li Q; Zhao Y; Zhao K; Liu Z; Chen Z BMC Cancer; 2023 Aug; 23(1):763. PubMed ID: 37592224 [TBL] [Abstract][Full Text] [Related]
8. Necrosis score as a prognostic factor in stage I-III colorectal cancer: a retrospective multicenter study. Ye H; Wang Y; Yao S; Liu Z; Liang C; Zhu Y; Cui Y; Zhao K Discov Oncol; 2023 May; 14(1):61. PubMed ID: 37155090 [TBL] [Abstract][Full Text] [Related]
9. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer. Song JH; Hong Y; Kim ER; Kim SH; Sohn I J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259 [TBL] [Abstract][Full Text] [Related]
10. The Crohn's-like lymphoid reaction density: a new artificial intelligence quantified prognostic immune index in colon cancer. Zhao M; Yao S; Li Z; Wu L; Xu Z; Pan X; Lin H; Xu Y; Yang S; Zhang S; Li Y; Zhao K; Liang C; Liu Z Cancer Immunol Immunother; 2022 May; 71(5):1221-1231. PubMed ID: 34642778 [TBL] [Abstract][Full Text] [Related]
11. Artificial intelligence-based analysis of tumor-infiltrating lymphocyte spatial distribution for colorectal cancer prognosis. Cai M; Zhao K; Wu L; Huang Y; Zhao M; Hu Q; Chen Q; Yao S; Li Z; Fan X; Liu Z Chin Med J (Engl); 2024 Feb; 137(4):421-430. PubMed ID: 38238158 [TBL] [Abstract][Full Text] [Related]
12. A novel deep learning-based algorithm combining histopathological features with tissue areas to predict colorectal cancer survival from whole-slide images. Li YJ; Chou HH; Lin PC; Shen MR; Hsieh SY J Transl Med; 2023 Oct; 21(1):731. PubMed ID: 37848862 [TBL] [Abstract][Full Text] [Related]
13. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers. Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528 [TBL] [Abstract][Full Text] [Related]
14. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology. Verma J; Sandhu A; Popli R; Kumar R; Khullar V; Kansal I; Sharma A; Garg K; Kashyap N; Aurangzeb K Open Life Sci; 2023; 18(1):20220777. PubMed ID: 38152577 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional intra-tumour heterogeneity predicted by deep learning in routine breast histopathology slides provides independent prognostic information. Wang Y; Ali MA; Vallon-Christersson J; Humphreys K; Hartman J; Rantalainen M Eur J Cancer; 2023 Sep; 191():112953. PubMed ID: 37494846 [TBL] [Abstract][Full Text] [Related]
16. Spatial analysis of tumor-infiltrating lymphocytes in histological sections using deep learning techniques predicts survival in colorectal carcinoma. Xu H; Cha YJ; Clemenceau JR; Choi J; Lee SH; Kang J; Hwang TH J Pathol Clin Res; 2022 Jul; 8(4):327-339. PubMed ID: 35484698 [TBL] [Abstract][Full Text] [Related]
17. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts. Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303 [TBL] [Abstract][Full Text] [Related]
18. Machine Learning Quantified Tumor-Stroma Ratio Is an Independent Prognosticator in Muscle-Invasive Bladder Cancer. Zheng Q; Jiang Z; Ni X; Yang S; Jiao P; Wu J; Xiong L; Yuan J; Wang J; Jian J; Wang L; Yang R; Chen Z; Liu X Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769068 [TBL] [Abstract][Full Text] [Related]
19. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016 [TBL] [Abstract][Full Text] [Related]
20. Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning. Jiang W; Mei WJ; Xu SY; Ling YH; Li WR; Kuang JB; Li HS; Hui H; Li JB; Cai MY; Pan ZZ; Zhang HZ; Li L; Ding PR EBioMedicine; 2022 Jul; 81():104120. PubMed ID: 35753152 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]