These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35693123)

  • 41. Deep learning-based pathological prediction of lymph node metastasis for patient with renal cell carcinoma from primary whole slide images.
    Gao F; Jiang L; Guo T; Lin J; Xu W; Yuan L; Han Y; Yang J; Pan Q; Chen E; Zhang N; Chen S; Wang X
    J Transl Med; 2024 Jun; 22(1):568. PubMed ID: 38877591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Outcome-Supervised Deep Learning on Pathologic Whole Slide Images for Survival Prediction of Immunotherapy in Patients with Non-Small Cell Lung Cancer.
    Li B; Yang L; Zhang H; Li H; Jiang C; Yao Y; Cheng S; Zou B; Fan B; Dong T; Wang L
    Mod Pathol; 2023 Aug; 36(8):100208. PubMed ID: 37149222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic Tumor Grading on Colorectal Cancer Whole-Slide Images: Semi-Quantitative Gland Formation Percentage and New Indicator Exploration.
    Chen S; Zhang M; Wang J; Xu M; Hu W; Wee L; Dekker A; Sheng W; Zhang Z
    Front Oncol; 2022; 12():833978. PubMed ID: 35646672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep learning-based automated quantification of goblet cell mucus using histological images as a predictor of clinical relapse of ulcerative colitis with endoscopic remission.
    Ohara J; Nemoto T; Maeda Y; Ogata N; Kudo SE; Yamochi T
    J Gastroenterol; 2022 Dec; 57(12):962-970. PubMed ID: 36184701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer.
    Ho C; Zhao Z; Chen XF; Sauer J; Saraf SA; Jialdasani R; Taghipour K; Sathe A; Khor LY; Lim KH; Leow WQ
    Sci Rep; 2022 Feb; 12(1):2222. PubMed ID: 35140318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fully Automated Tumor Bud Assessment in Hematoxylin and Eosin-Stained Whole Slide Images of Colorectal Cancer.
    Bokhorst JM; Ciompi F; Öztürk SK; Oguz Erdogan AS; Vieth M; Dawson H; Kirsch R; Simmer F; Sheahan K; Lugli A; Zlobec I; van der Laak J; Nagtegaal ID
    Mod Pathol; 2023 Sep; 36(9):100233. PubMed ID: 37257824
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surrogate Biomarker Prediction from Whole-Slide Images for Evaluating Overall Survival in Lung Adenocarcinoma.
    Murchan P; Baird AM; Ó Broin P; Sheils O; Finn SP
    Diagnostics (Basel); 2024 Feb; 14(5):. PubMed ID: 38472935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study.
    Yang H; Chen L; Cheng Z; Yang M; Wang J; Lin C; Wang Y; Huang L; Chen Y; Peng S; Ke Z; Li W
    BMC Med; 2021 Mar; 19(1):80. PubMed ID: 33775248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Piloting a Deep Learning Model for Predicting Nuclear BAP1 Immunohistochemical Expression of Uveal Melanoma from Hematoxylin-and-Eosin Sections.
    Zhang H; Kalirai H; Acha-Sagredo A; Yang X; Zheng Y; Coupland SE
    Transl Vis Sci Technol; 2020 Sep; 9(2):50. PubMed ID: 32953248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Prognostic value of the grade of cellular differentiation, of mucus presence and the growth pattern of the invasive margin in colorectal adenocarcinomas Dukes B].
    Henrique-Filho C; Bromberg SH; Barreto E; Godoy AC; Mattosinho-França LC
    Arq Gastroenterol; 2004; 41(3):185-9. PubMed ID: 15678204
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study.
    Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE
    Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of an AI-based solution for breast cancer risk stratification using routine digital histopathology images.
    Sharma A; Lövgren SK; Eriksson KL; Wang Y; Robertson S; Hartman J; Rantalainen M
    Breast Cancer Res; 2024 Aug; 26(1):123. PubMed ID: 39143539
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients.
    Comes MC; Fucci L; Mele F; Bove S; Cristofaro C; De Risi I; Fanizzi A; Milella M; Strippoli S; Zito A; Guida M; Massafra R
    Sci Rep; 2022 Nov; 12(1):20366. PubMed ID: 36437296
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep Learning Analysis for Predicting Tumor Spread through Air Space in Early-Stage Lung Adenocarcinoma Pathology Images.
    Ou DX; Lu CW; Chen LW; Lee WY; Hu HW; Chuang JH; Lin MW; Chen KY; Chiu LY; Chen JS; Chen CM; Hsieh MS
    Cancers (Basel); 2024 Jun; 16(11):. PubMed ID: 38893251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Multimodal Lung Cancer Subtyping Using Deep Learning Neural Networks on Whole Slide Tissue Images and MALDI MSI.
    Janßen C; Boskamp T; Le'Clerc Arrastia J; Otero Baguer D; Hauberg-Lotte L; Kriegsmann M; Kriegsmann K; Steinbuß G; Casadonte R; Kriegsmann J; Maaß P
    Cancers (Basel); 2022 Dec; 14(24):. PubMed ID: 36551667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Novel Nomogram Based on Machine Learning-Pathomics Signature and Neutrophil to Lymphocyte Ratio for Survival Prediction of Bladder Cancer Patients.
    Chen S; Jiang L; Zhang E; Hu S; Wang T; Gao F; Zhang N; Wang X; Zheng J
    Front Oncol; 2021; 11():703033. PubMed ID: 34222026
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a whole-slide-level segmentation-based dMMR/pMMR deep learning detector for colorectal cancer.
    Tong Z; Wang Y; Bao X; Deng Y; Lin B; Su G; Ye K; Dai X; Zhang H; Liu L; Wang W; Zheng Y; Fang W; Zhao P; Ding P; Deng S; Xu X
    iScience; 2023 Dec; 26(12):108468. PubMed ID: 38077136
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of histopathological classification and establishment of prognostic indicators of gastric adenocarcinoma based on deep learning algorithm.
    Wang Z; Peng H; Wan J; Song A
    Med Mol Morphol; 2024 Dec; 57(4):286-298. PubMed ID: 39088070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colorectal Cancer Survival Prediction Using Deep Distribution Based Multiple-Instance Learning.
    Li X; Jonnagaddala J; Cen M; Zhang H; Xu S
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.