These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35694226)

  • 1. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies.
    Lora-Millan JS; Moreno JC; Rocon E
    Front Bioeng Biotechnol; 2022; 10():842294. PubMed ID: 35694226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of control strategies for lower-limb exoskeletons to assist gait.
    Baud R; Manzoori AR; Ijspeert A; Bouri M
    J Neuroeng Rehabil; 2021 Jul; 18(1):119. PubMed ID: 34315499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. State-of-the-art research in robotic hip exoskeletons: A general review.
    Chen B; Zi B; Qin L; Pan Q
    J Orthop Translat; 2020 Jan; 20():4-13. PubMed ID: 31908928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
    Rodríguez-Fernández A; Lobo-Prat J; Font-Llagunes JM
    J Neuroeng Rehabil; 2021 Feb; 18(1):22. PubMed ID: 33526065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.
    Young AJ; Foss J; Gannon H; Ferris DP
    Front Bioeng Biotechnol; 2017; 5():4. PubMed ID: 28337434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia - a Review.
    Chang SR; Kobetic R; Audu ML; Quinn RD; Triolo RJ
    Case Orthop J; 2015; 12(1):75-80. PubMed ID: 28004009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Wearable Sensors in Actuation and Control of Powered Ankle Exoskeletons: A Comprehensive Review.
    Kian A; Widanapathirana G; Joseph AM; Lai DTH; Begg R
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Powered robotic exoskeletons in post-stroke rehabilitation of gait: a scoping review.
    Louie DR; Eng JJ
    J Neuroeng Rehabil; 2016 Jun; 13(1):53. PubMed ID: 27278136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic exoskeletons: a perspective for the rehabilitation of arm coordination in stroke patients.
    Jarrassé N; Proietti T; Crocher V; Robertson J; Sahbani A; Morel G; Roby-Brami A
    Front Hum Neurosci; 2014; 8():947. PubMed ID: 25520638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off.
    Grazi L; Crea S; Parri A; Molino Lova R; Micera S; Vitiello N
    Front Neurosci; 2018; 12():71. PubMed ID: 29491830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
    Hussain F; Goecke R; Mohammadian M
    Proc Inst Mech Eng H; 2021 Dec; 235(12):1375-1385. PubMed ID: 34254562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control.
    Koller JR; Remy CD; Ferris DP
    J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.