These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35694474)
1. Superhydrophobic Electrodeposited Copper Surface for Robust Condensation Heat Transfer. Park J; Kim D; Kim H; Park WI; Lee J; Chung W ACS Omega; 2022 Jun; 7(22):19021-19029. PubMed ID: 35694474 [TBL] [Abstract][Full Text] [Related]
2. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation. Wang R; Wu F; Xing D; Yu F; Gao X ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858 [TBL] [Abstract][Full Text] [Related]
3. Atmosphere-Mediated Superhydrophobicity of Rationally Designed Micro/Nanostructured Surfaces. Yan X; Huang Z; Sett S; Oh J; Cha H; Li L; Feng L; Wu Y; Zhao C; Orejon D; Chen F; Miljkovic N ACS Nano; 2019 Apr; 13(4):4160-4173. PubMed ID: 30933473 [TBL] [Abstract][Full Text] [Related]
4. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
5. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces. Miljkovic N; Preston DJ; Enright R; Wang EN ACS Nano; 2013 Dec; 7(12):11043-54. PubMed ID: 24261667 [TBL] [Abstract][Full Text] [Related]
7. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces. Shim J; Seo D; Oh S; Lee J; Nam Y ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846 [TBL] [Abstract][Full Text] [Related]
8. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces. Ölçeroğlu E; McCarthy M ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. Sasmal AK; Mondal C; Sinha AK; Gauri SS; Pal J; Aditya T; Ganguly M; Dey S; Pal T ACS Appl Mater Interfaces; 2014 Dec; 6(24):22034-43. PubMed ID: 25419984 [TBL] [Abstract][Full Text] [Related]
10. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces. Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845 [TBL] [Abstract][Full Text] [Related]
11. Spontaneous recovery of superhydrophobicity on nanotextured surfaces. Prakash S; Xi E; Patel AJ Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619 [TBL] [Abstract][Full Text] [Related]
12. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion. Brassard JD; Sarkar DK; Perron J; Audibert-Hayet A; Melot D J Colloid Interface Sci; 2015 Jun; 447():240-7. PubMed ID: 25529334 [TBL] [Abstract][Full Text] [Related]
13. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces. Song Z; Lu M; Chen X ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678 [TBL] [Abstract][Full Text] [Related]
14. A Study of Droplet-Behavior Transition on Superhydrophobic Surfaces for Efficiency Enhancement of Condensation Heat Transfer. Lee JW; Ji DY; Lee KY; Hwang W ACS Omega; 2020 Nov; 5(43):27880-27885. PubMed ID: 33163771 [TBL] [Abstract][Full Text] [Related]
15. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition. Jiang S; Guo Z; Liu G; Gyimah GK; Li X; Dong H Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29068427 [TBL] [Abstract][Full Text] [Related]
16. Flow condensation on copper-based nanotextured superhydrophobic surfaces. Torresin D; Tiwari MK; Del Col D; Poulikakos D Langmuir; 2013 Jan; 29(2):840-8. PubMed ID: 23249322 [TBL] [Abstract][Full Text] [Related]
17. Toward Easily Enlarged Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance, Excellent Self-Cleaning and Anti-Icing Performance by a Facile Method. Shi X; Zhao L; Wang J; Feng L J Nanosci Nanotechnol; 2020 Oct; 20(10):6317-6325. PubMed ID: 32384981 [TBL] [Abstract][Full Text] [Related]
18. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Miljkovic N; Enright R; Nam Y; Lopez K; Dou N; Sack J; Wang EN Nano Lett; 2013 Jan; 13(1):179-87. PubMed ID: 23190055 [TBL] [Abstract][Full Text] [Related]
19. Controllable growth of durable superhydrophobic coatings on a copper substrate via electrodeposition. He G; Lu S; Xu W; Szunerits S; Boukherroub R; Zhang H Phys Chem Chem Phys; 2015 Apr; 17(16):10871-80. PubMed ID: 25821030 [TBL] [Abstract][Full Text] [Related]