These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 35694474)
21. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy. She Z; Li Q; Wang Z; Li L; Chen F; Zhou J ACS Appl Mater Interfaces; 2012 Aug; 4(8):4348-56. PubMed ID: 22845176 [TBL] [Abstract][Full Text] [Related]
22. Production and characterization of stable superhydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders. Wu X; Shi G J Phys Chem B; 2006 Jun; 110(23):11247-52. PubMed ID: 16771392 [TBL] [Abstract][Full Text] [Related]
23. Effect of Surface Structure Complexity on Interfacial Droplet Behavior of Superhydrophobic Titanium Surfaces for Robust Dropwise Condensation. Jeong JU; Ji DY; Lee KY; Hwang W; Lee CH; Kim SJ; Lee JW Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361301 [TBL] [Abstract][Full Text] [Related]
24. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
25. Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. Zhu J; Luo Y; Tian J; Li J; Gao X ACS Appl Mater Interfaces; 2015 May; 7(20):10660-5. PubMed ID: 25966966 [TBL] [Abstract][Full Text] [Related]
26. One-Step Fabrication of Robust Superhydrophobic Steel Surfaces with Mechanical Durability, Thermal Stability, and Anti-icing Function. Wang H; He M; Liu H; Guan Y ACS Appl Mater Interfaces; 2019 Jul; 11(28):25586-25594. PubMed ID: 31267735 [TBL] [Abstract][Full Text] [Related]
27. Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Celik N; Sahin F; Ruzi M; Yay M; Unal E; Onses MS Colloids Surf B Biointerfaces; 2021 Sep; 205():111864. PubMed ID: 34049000 [TBL] [Abstract][Full Text] [Related]
29. Oxygen-Terminated Polycrystalline Boron-Doped Diamond Superhydrophobic Surface with Excellent Mechanical and Thermal Stabilities. Wang P; Wang T; Yang M; Wang Q; Yuan X; Cui Z; Gao N; Liu J; Cheng S; Jiang Z; Jin H; Li H Small; 2024 Oct; 20(43):e2402481. PubMed ID: 38953414 [TBL] [Abstract][Full Text] [Related]
30. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane. Long M; Peng S; Deng W; Yang X; Miao K; Wen N; Miao X; Deng W J Colloid Interface Sci; 2017 Dec; 508():18-27. PubMed ID: 28818653 [TBL] [Abstract][Full Text] [Related]
31. Facile fabrication of superhydrophobic Cu(OH)2 nanorod and CuO nanosheet arrays on copper surface. Guo Y; Wu H; Li Y; Jiang C; Wang Q; Wang T J Nanosci Nanotechnol; 2012 Mar; 12(3):1952-6. PubMed ID: 22755004 [TBL] [Abstract][Full Text] [Related]
32. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. Ghasemlou M; Le PH; Daver F; Murdoch BJ; Ivanova EP; Adhikari B ACS Appl Mater Interfaces; 2021 Aug; 13(30):36558-36573. PubMed ID: 34284587 [TBL] [Abstract][Full Text] [Related]
33. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces. Lv C; Hao P; Zhang X; He F ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420 [TBL] [Abstract][Full Text] [Related]
34. Passive Anti-Flooding Superhydrophobic Surfaces. Seo D; Shim J; Moon B; Lee K; Lee J; Lee C; Nam Y ACS Appl Mater Interfaces; 2020 Jan; 12(3):4068-4080. PubMed ID: 31891474 [TBL] [Abstract][Full Text] [Related]
35. Thermally Robust Non-Wetting Ni-PTFE Electrodeposited Nanocomposite. Tam J; Lau JCF; Erb U Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30577449 [TBL] [Abstract][Full Text] [Related]
36. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method. Su F; Yao K ACS Appl Mater Interfaces; 2014 Jun; 6(11):8762-70. PubMed ID: 24796223 [TBL] [Abstract][Full Text] [Related]
37. Copper nanoparticle decorated non-woven polypropylene fabrics with durable superhydrophobicity and conductivity. Zhu S; Kang Z; Wang F; Long Y Nanotechnology; 2021 Jan; 32(3):035701. PubMed ID: 33089829 [TBL] [Abstract][Full Text] [Related]
38. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication. Pan R; Zhang H; Zhong M ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114 [TBL] [Abstract][Full Text] [Related]
39. Enhancement of Dropwise Condensation Heat Transfer through a Sprayable Superhydrophobic Coating. Rezaee B; Mahlouji Taheri M; Pakzad H; Fakhri M; Moosavi A; Aryanpour M Langmuir; 2023 Jun; 39(23):8354-8366. PubMed ID: 37267064 [TBL] [Abstract][Full Text] [Related]
40. Biphilic Surfaces with Optimum Hydrophobic Islands on a Superhydrophobic Background for Dropwise Flow Condensation. Chehrghani MM; Abbasiasl T; Sadaghiani AK; Koşar A Langmuir; 2021 Nov; 37(46):13567-13575. PubMed ID: 34751032 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]