These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 35694522)

  • 1. MegaSyn: Integrating Generative Molecular Design, Automated Analog Designer, and Synthetic Viability Prediction.
    Urbina F; Lowden CT; Culberson JC; Ekins S
    ACS Omega; 2022 Jun; 7(22):18699-18713. PubMed ID: 35694522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SMILES-based deep generative scaffold decorator for de-novo drug design.
    Arús-Pous J; Patronov A; Bjerrum EJ; Tyrchan C; Reymond JL; Chen H; Engkvist O
    J Cheminform; 2020 May; 12(1):38. PubMed ID: 33431013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating synthetic accessibility with AI-based generative drug design.
    Parrot M; Tajmouati H; da Silva VBR; Atwood BR; Fourcade R; Gaston-Mathé Y; Do Huu N; Perron Q
    J Cheminform; 2023 Sep; 15(1):83. PubMed ID: 37726842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UnCorrupt SMILES: a novel approach to de novo design.
    Schoenmaker L; Béquignon OJM; Jespers W; van Westen GJP
    J Cheminform; 2023 Feb; 15(1):22. PubMed ID: 36788579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold-Constrained Molecular Generation.
    Langevin M; Minoux H; Levesque M; Bianciotto M
    J Chem Inf Model; 2020 Dec; 60(12):5637-5646. PubMed ID: 33301333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actively Searching: Inverse Design of Novel Molecules with Simultaneously Optimized Properties.
    Iovanac NC; MacKnight R; Savoie BM
    J Phys Chem A; 2022 Jan; 126(2):333-340. PubMed ID: 34985908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GEN: highly efficient SMILES explorer using autodidactic generative examination networks.
    van Deursen R; Ertl P; Tetko IV; Godin G
    J Cheminform; 2020 Apr; 12(1):22. PubMed ID: 33430998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MolGPT: Molecular Generation Using a Transformer-Decoder Model.
    Bagal V; Aggarwal R; Vinod PK; Priyakumar UD
    J Chem Inf Model; 2022 May; 62(9):2064-2076. PubMed ID: 34694798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MERMAID: an open source automated hit-to-lead method based on deep reinforcement learning.
    Erikawa D; Yasuo N; Sekijima M
    J Cheminform; 2021 Nov; 13(1):94. PubMed ID: 34838134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing interactions to protein binding sites by integrating docking-scoring strategies into generative AI methods.
    Sauer S; Matter H; Hessler G; Grebner C
    Front Chem; 2022; 10():1012507. PubMed ID: 36339033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magicmol: a light-weighted pipeline for drug-like molecule evolution and quick chemical space exploration.
    Chen L; Shen Q; Lou J
    BMC Bioinformatics; 2023 Apr; 24(1):173. PubMed ID: 37101113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Augmented Hill-Climb increases reinforcement learning efficiency for language-based de novo molecule generation.
    Thomas M; O'Boyle NM; Bender A; de Graaf C
    J Cheminform; 2022 Oct; 14(1):68. PubMed ID: 36192789
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Staker J; Marshall K; Leswing K; Robertson T; Halls MD; Goldberg A; Morisato T; Maeshima H; Ando T; Arai H; Sasago M; Fujii E; Matsuzawa NN
    J Phys Chem A; 2022 Sep; 126(34):5837-5852. PubMed ID: 35984470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space.
    Wang M; Wu Z; Wang J; Weng G; Kang Y; Pan P; Li D; Deng Y; Yao X; Bing Z; Hsieh CY; Hou T
    J Chem Inf Model; 2024 Feb; 64(4):1213-1228. PubMed ID: 38302422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning.
    Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H
    J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Models for De Novo Drug Design.
    Tong X; Liu X; Tan X; Li X; Jiang J; Xiong Z; Xu T; Jiang H; Qiao N; Zheng M
    J Med Chem; 2021 Oct; 64(19):14011-14027. PubMed ID: 34533311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Molecular Design of Caspase-6 Inhibitors by a GRU-Based Recurrent Neural Network Combined with a Transfer Learning Approach.
    Huang S; Mei H; Lu L; Qiu M; Liang X; Xu L; Kuang Z; Heng Y; Pan X
    Pharmaceuticals (Basel); 2021 Nov; 14(12):. PubMed ID: 34959651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive assessment of deep generative architectures for de novo drug design.
    Wang M; Sun H; Wang J; Pang J; Chai X; Xu L; Li H; Cao D; Hou T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34929743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.