These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 35694575)

  • 1. Optimizing the Deep Neural Networks by Layer-Wise Refined Pruning and the Acceleration on FPGA.
    Li H; Yue X; Wang Z; Chai Z; Wang W; Tomiyama H; Meng L
    Comput Intell Neurosci; 2022; 2022():8039281. PubMed ID: 35694575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Layer-Wise
    Xie X; Zhu M; Lu S; Wang Z
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundancy-Aware Pruning of Convolutional Neural Networks.
    Xie G
    Neural Comput; 2020 Dec; 32(12):2532-2556. PubMed ID: 33080161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays.
    Tufa GT; Andargie FA; Bijalwan A
    Comput Intell Neurosci; 2022; 2022():8387364. PubMed ID: 36299439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Automate Python Edge-to-Edge: From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration.
    Belabed T; Ramos Gomes da Silva V; Quenon A; Valderamma C; Souani C
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression of Deep Neural Networks based on quantized tensor decomposition to implement on reconfigurable hardware platforms.
    Nekooei A; Safari S
    Neural Netw; 2022 Jun; 150():350-363. PubMed ID: 35344706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HRel: Filter pruning based on High Relevance between activation maps and class labels.
    Sarvani CH; Ghorai M; Dubey SR; Basha SHS
    Neural Netw; 2022 Mar; 147():186-197. PubMed ID: 35042156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hardware Trojan Attacks on the Reconfigurable Interconnections of Field-Programmable Gate Array-Based Convolutional Neural Network Accelerators and a Physically Unclonable Function-Based Countermeasure Detection Technique.
    Hou J; Liu Z; Yang Z; Yang C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An FSCV Deep Neural Network: Development, Pruning, and Acceleration on an FPGA.
    Zhang Z; Oh Y; Adams SD; Bennet KE; Kouzani AZ
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2248-2259. PubMed ID: 33175684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG.
    Liu W; Guo Q; Chen S; Chang S; Wang H; He J; Huang Q
    Front Physiol; 2023; 14():1079503. PubMed ID: 36814476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA.
    Yu L; Zhu J; Zhao Q; Wang Z
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
    He Y; Dong X; Kang G; Fu Y; Yan C; Yang Y
    IEEE Trans Cybern; 2020 Aug; 50(8):3594-3604. PubMed ID: 31478883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical Channel Pruning by Conditional Accuracy Change for Deep Neural Networks.
    Chen Z; Xu TB; Du C; Liu CL; He H
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):799-813. PubMed ID: 32275616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exact mapping from ReLU networks to spiking neural networks.
    Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W
    Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-layer importance evaluation for neural network pruning.
    Lian Y; Peng P; Jiang K; Xu W
    Neural Netw; 2024 Nov; 179():106496. PubMed ID: 39285609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.