BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 35694575)

  • 1. Optimizing the Deep Neural Networks by Layer-Wise Refined Pruning and the Acceleration on FPGA.
    Li H; Yue X; Wang Z; Chai Z; Wang W; Tomiyama H; Meng L
    Comput Intell Neurosci; 2022; 2022():8039281. PubMed ID: 35694575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Layer-Wise
    Xie X; Zhu M; Lu S; Wang Z
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redundancy-Aware Pruning of Convolutional Neural Networks.
    Xie G
    Neural Comput; 2020 Dec; 32(12):2532-2556. PubMed ID: 33080161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays.
    Tufa GT; Andargie FA; Bijalwan A
    Comput Intell Neurosci; 2022; 2022():8387364. PubMed ID: 36299439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Automate Python Edge-to-Edge: From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration.
    Belabed T; Ramos Gomes da Silva V; Quenon A; Valderamma C; Souani C
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compression of Deep Neural Networks based on quantized tensor decomposition to implement on reconfigurable hardware platforms.
    Nekooei A; Safari S
    Neural Netw; 2022 Jun; 150():350-363. PubMed ID: 35344706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HRel: Filter pruning based on High Relevance between activation maps and class labels.
    Sarvani CH; Ghorai M; Dubey SR; Basha SHS
    Neural Netw; 2022 Mar; 147():186-197. PubMed ID: 35042156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hardware Trojan Attacks on the Reconfigurable Interconnections of Field-Programmable Gate Array-Based Convolutional Neural Network Accelerators and a Physically Unclonable Function-Based Countermeasure Detection Technique.
    Hou J; Liu Z; Yang Z; Yang C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An FSCV Deep Neural Network: Development, Pruning, and Acceleration on an FPGA.
    Zhang Z; Oh Y; Adams SD; Bennet KE; Kouzani AZ
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):2248-2259. PubMed ID: 33175684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG.
    Liu W; Guo Q; Chen S; Chang S; Wang H; He J; Huang Q
    Front Physiol; 2023; 14():1079503. PubMed ID: 36814476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient YOLO Algorithm with an Attention Mechanism for Vision-Based Defect Inspection Deployed on FPGA.
    Yu L; Zhu J; Zhao Q; Wang Z
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
    He Y; Dong X; Kang G; Fu Y; Yan C; Yang Y
    IEEE Trans Cybern; 2020 Aug; 50(8):3594-3604. PubMed ID: 31478883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamical Channel Pruning by Conditional Accuracy Change for Deep Neural Networks.
    Chen Z; Xu TB; Du C; Liu CL; He H
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):799-813. PubMed ID: 32275616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exact mapping from ReLU networks to spiking neural networks.
    Stanojevic A; Woźniak S; Bellec G; Cherubini G; Pantazi A; Gerstner W
    Neural Netw; 2023 Nov; 168():74-88. PubMed ID: 37742533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxiliary Pneumonia Classification Algorithm Based on Pruning Compression.
    Yang CP; Zhu JQ; Yan T; Su QL; Zheng LX
    Comput Math Methods Med; 2022; 2022():8415187. PubMed ID: 35898478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.