These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 35694853)
41. DNA polymorphism: a comparison of force fields for nucleic acids. Reddy SY; Leclerc F; Karplus M Biophys J; 2003 Mar; 84(3):1421-49. PubMed ID: 12609851 [TBL] [Abstract][Full Text] [Related]
42. The nuclear magnetic resonance of CCCC RNA reveals a right-handed helix, and revised parameters for AMBER force field torsions improve structural predictions from molecular dynamics. Tubbs JD; Condon DE; Kennedy SD; Hauser M; Bevilacqua PC; Turner DH Biochemistry; 2013 Feb; 52(6):996-1010. PubMed ID: 23286901 [TBL] [Abstract][Full Text] [Related]
43. Force field validation for nucleic acid simulations: comparing energies and dynamics of a DNA dodecamer. Jha S; Coveney PV; Laughton CA J Comput Chem; 2005 Nov; 26(15):1617-27. PubMed ID: 16170796 [TBL] [Abstract][Full Text] [Related]
44. Structural equilibrium of DNA represented with different force fields. Feig M; Pettitt BM Biophys J; 1998 Jul; 75(1):134-49. PubMed ID: 9649374 [TBL] [Abstract][Full Text] [Related]
45. Adjusting the Energy Profile for CH-O Interactions Leads to Improved Stability of RNA Stem-Loop Structures in MD Simulations. Raguette LE; Gunasekera SS; Diaz Ventura RI; Aminov E; Linzer JT; Parwana D; Wu Q; Simmerling C; Nagan MC J Phys Chem B; 2024 Aug; 128(33):7921-7933. PubMed ID: 39110091 [TBL] [Abstract][Full Text] [Related]
46. Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA. Karakas E; Taveneau C; Bressanelli S; Marchi M; Robert B; Abel S J Biomol Struct Dyn; 2017 Jan; 35(1):159-181. PubMed ID: 26998712 [TBL] [Abstract][Full Text] [Related]
47. Toward a consensus view of duplex RNA flexibility. Faustino I; Pérez A; Orozco M Biophys J; 2010 Sep; 99(6):1876-85. PubMed ID: 20858433 [TBL] [Abstract][Full Text] [Related]
48. Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. Langley DR J Biomol Struct Dyn; 1998 Dec; 16(3):487-509. PubMed ID: 10052609 [TBL] [Abstract][Full Text] [Related]
49. Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. Beššeová I; Banáš P; Kührová P; Košinová P; Otyepka M; Šponer J J Phys Chem B; 2012 Aug; 116(33):9899-916. PubMed ID: 22809319 [TBL] [Abstract][Full Text] [Related]
50. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. Zhao J; Kennedy SD; Berger KD; Turner DH J Chem Theory Comput; 2020 Mar; 16(3):1968-1984. PubMed ID: 31904966 [TBL] [Abstract][Full Text] [Related]
51. LIPID11: a modular framework for lipid simulations using amber. Skjevik ÅA; Madej BD; Walker RC; Teigen K J Phys Chem B; 2012 Sep; 116(36):11124-36. PubMed ID: 22916730 [TBL] [Abstract][Full Text] [Related]
52. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. Havrila M; Zgarbová M; Jurečka P; Banáš P; Krepl M; Otyepka M; Šponer J J Phys Chem B; 2015 Dec; 119(49):15176-90. PubMed ID: 26548477 [TBL] [Abstract][Full Text] [Related]
53. RNA-protein complexes and force field polarizability. Baltrukevich H; Bartos P Front Chem; 2023; 11():1217506. PubMed ID: 37426330 [TBL] [Abstract][Full Text] [Related]
54. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894 [TBL] [Abstract][Full Text] [Related]
55. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. Bergonzo C; Henriksen NM; Roe DR; Cheatham TE RNA; 2015 Sep; 21(9):1578-90. PubMed ID: 26124199 [TBL] [Abstract][Full Text] [Related]
56. Optimization of an AMBER force field for the artificial nucleic acid, LNA, and benchmarking with NMR of L(CAAU). Condon DE; Yildirim I; Kennedy SD; Mort BC; Kierzek R; Turner DH J Phys Chem B; 2014 Feb; 118(5):1216-28. PubMed ID: 24377321 [TBL] [Abstract][Full Text] [Related]
57. Improved Accuracy in RNA-Protein Rigid Body Docking by Incorporating Force Field for Molecular Dynamics Simulation into the Scoring Function. Iwakiri J; Hamada M; Asai K; Kameda T J Chem Theory Comput; 2016 Sep; 12(9):4688-97. PubMed ID: 27494732 [TBL] [Abstract][Full Text] [Related]
58. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. Zgarbová M; Šponer J; Otyepka M; Cheatham TE; Galindo-Murillo R; Jurečka P J Chem Theory Comput; 2015 Dec; 11(12):5723-36. PubMed ID: 26588601 [TBL] [Abstract][Full Text] [Related]
59. Disagreement Between the Structure of the dTpT Thymine Pair Determined by NMR and Molecular Dynamics Simulations Using Amber 14 Force Fields. Nganou C; Kennedy SD; McCamant DW J Phys Chem B; 2016 Feb; 120(7):1250-8. PubMed ID: 26836489 [TBL] [Abstract][Full Text] [Related]
60. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. Fadrná E; Špačková N; Sarzyñska J; Koča J; Orozco M; Cheatham TE; Kulinski T; Šponer J J Chem Theory Comput; 2009 Sep; 5(9):2514-30. PubMed ID: 26616629 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]