These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 35695572)

  • 21. Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum.
    Son H; Park AR; Lim JY; Shin C; Lee YW
    PLoS Genet; 2017 Feb; 13(2):e1006595. PubMed ID: 28146558
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry.
    Mamarabadi M; Jensen B; Jensen DF; Lübeck M
    FEMS Microbiol Lett; 2008 Aug; 285(1):101-10. PubMed ID: 18557783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea.
    Kosawang C; Karlsson M; Jensen DF; Dilokpimol A; Collinge DB
    BMC Genomics; 2014 Jan; 15():55. PubMed ID: 24450745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of Fusarium graminearum-responsive miRNAs and their targets in wheat by sRNA sequencing and degradome analysis.
    Jin X; Jia L; Wang Y; Li B; Sun D; Chen X
    Funct Integr Genomics; 2020 Jan; 20(1):51-61. PubMed ID: 31302787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An N-acetyl-beta-D-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum.
    Mamarabadi M; Jensen DF; Lübeck M
    Mycol Res; 2009 Jan; 113(Pt 1):33-43. PubMed ID: 18675351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zearalenone detoxification by zearalenone hydrolase is important for the antagonistic ability of Clonostachys rosea against mycotoxigenic Fusarium graminearum.
    Kosawang C; Karlsson M; Vélëz H; Rasmussen PH; Collinge DB; Jensen B; Jensen DF
    Fungal Biol; 2014 Apr; 118(4):364-73. PubMed ID: 24742831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Early transcriptomic response of the mycoparasite
    Kim SH; Vujanovic V
    Bioresour Bioprocess; 2021; 8(1):127. PubMed ID: 34993050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in
    Broberg M; Dubey M; Iqbal M; Gudmundssson M; Ihrmark K; Schroers HJ; Funck Jensen D; Brandström Durling M; Karlsson M
    Evol Appl; 2021 Feb; 14(2):476-497. PubMed ID: 33664789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying glycoside hydrolase family 18 genes in the mycoparasitic fungal species Clonostachys rosea.
    Tzelepis G; Dubey M; Jensen DF; Karlsson M
    Microbiology (Reading); 2015 Jul; 161(7):1407-19. PubMed ID: 25881898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The heat shock protein 70 gene is involved for colony morphology, sporulation and mycoparasitism of Clonostachys rosea.
    Sun ZB; Wang Q; Sun MH; Li SD
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular characterization of cross-kingdom RNA interference in
    Qin S; Veloso J; Puccetti G; van Kan JAL
    Front Plant Sci; 2023; 14():1107888. PubMed ID: 36968352
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mode of action of potential biocontrol agents against
    Abdellatif L; Fernandez MR; Lokuruge P
    Mycologia; 2022; 114(3):476-486. PubMed ID: 35583987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A perilipin gene from Clonostachys rosea f. Catenulata HL-1-1 is related to sclerotial parasitism.
    Sun ZB; Li SD; Zhong ZM; Sun MH
    Int J Mol Sci; 2015 Mar; 16(3):5347-62. PubMed ID: 25761240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. fIdentification of B. napus small RNAs responsive to infection by a necrotrophic pathogen.
    Regmi R; Newman TE; Kamphuis LG; Derbyshire MC
    BMC Plant Biol; 2021 Aug; 21(1):366. PubMed ID: 34380425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Argonaute and Dicer are essential for communication between
    Enriquez-Felix EE; Pérez-Salazar C; Rico-Ruiz JG; Calheiros de Carvalho A; Cruz-Morales P; Villalobos-Escobedo JM; Herrera-Estrella A
    Microbiol Spectr; 2024 Apr; 12(4):e0316523. PubMed ID: 38441469
    [No Abstract]   [Full Text] [Related]  

  • 36. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.
    Mohorianu I; Stocks MB; Applegate CS; Folkes L; Moulton V
    Methods Mol Biol; 2017; 1580():193-224. PubMed ID: 28439835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptomic Response of
    Sun ZB; Yu SF; Sun MH; Li SD; Hu YF; Song HJ
    J Fungi (Basel); 2023 Aug; 9(8):. PubMed ID: 37623589
    [No Abstract]   [Full Text] [Related]  

  • 38. Genome-wide identification of Sclerotinia sclerotiorum small RNAs and their endogenous targets.
    Regmi R; Newman TE; Khentry Y; Kamphuis LG; Derbyshire MC
    BMC Genomics; 2023 Oct; 24(1):582. PubMed ID: 37784009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Three-Way Transcriptomic Interaction Study of a Biocontrol Agent (Clonostachys rosea), a Fungal Pathogen (Helminthosporium solani), and a Potato Host (Solanum tuberosum).
    Lysøe E; Dees MW; Brurberg MB
    Mol Plant Microbe Interact; 2017 Aug; 30(8):646-655. PubMed ID: 28585451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating the regulatory roles of the microRNAs and the Argonaute 1-enriched small RNAs in plant metabolism.
    Qin J; Tang Z; Ma X; Meng Y
    Gene; 2017 Sep; 628():180-189. PubMed ID: 28698160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.