These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35695787)
41. Ethylene Polymerizations Using Parallel Pressure Reactors and a Kinetic Analysis of Chain Transfer Polymerization. Hue RJ; Tonks IA J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650240 [TBL] [Abstract][Full Text] [Related]
42. Designing polyethylenes of complex chain architectures via Pd-diimine-catalyzed "living" ethylene polymerization. Ye Z; Xu L; Dong Z; Xiang P Chem Commun (Camb); 2013 Jul; 49(56):6235-55. PubMed ID: 23752687 [TBL] [Abstract][Full Text] [Related]
43. Selective branch formation in ethylene polymerization to access precise ethylene-propylene copolymers. Zhang Y; Kang X; Jian Z Nat Commun; 2022 Feb; 13(1):725. PubMed ID: 35132061 [TBL] [Abstract][Full Text] [Related]
44. Distorted Sandwich α-Diimine Pd Liu YS; Harth E Angew Chem Int Ed Engl; 2021 Nov; 60(45):24107-24115. PubMed ID: 34403566 [TBL] [Abstract][Full Text] [Related]
45. Unprecedented living olefin polymerization derived from an attractive interaction between a ligand and a growing polymer chain. Mitani M; Nakano T; Fujita T Chemistry; 2003 Jun; 9(11):2396-403. PubMed ID: 12794884 [TBL] [Abstract][Full Text] [Related]
46. Neutral nickel oligo- and polymerization catalysts: the importance of alkyl phosphine intermediates in chain termination. Heyndrickx W; Occhipinti G; Minenkov Y; Jensen VR Chemistry; 2011 Dec; 17(51):14628-42. PubMed ID: 22095527 [TBL] [Abstract][Full Text] [Related]
47. Origin of Suppressed Chain Transfer in Phosphinephenolato Ni(II)-Catalyzed Ethylene Polymerization. Lin F; Voccia M; Odenwald L; Göttker-Schnetmann I; Falivene L; Caporaso L; Mecking S J Am Chem Soc; 2023 Dec; 145(51):27950-27957. PubMed ID: 38103185 [TBL] [Abstract][Full Text] [Related]
48. Direct Synthesis of Polyethylene Thermoplastic Elastomers Using Hybrid Bulky Acenaphthene-Based α-Diimine Ni(II) Catalysts. Wang H; Lu W; Zou M; Dai S Molecules; 2023 Feb; 28(5):. PubMed ID: 36903510 [TBL] [Abstract][Full Text] [Related]
49. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Cheng S; Zhao R; Seferos DS Acc Chem Res; 2021 Nov; 54(22):4203-4214. PubMed ID: 34726058 [TBL] [Abstract][Full Text] [Related]
50. Aqueous Coordination-Insertion Copolymerization for Producing High Molecular Weight Polar Polyolefins. Liu Y; Wang C; Mu H; Jian Z Angew Chem Int Ed Engl; 2024 Jun; 63(23):e202404392. PubMed ID: 38548659 [TBL] [Abstract][Full Text] [Related]
51. Slurry Homopolymerization of Ethylene Using Thermostable α-Diimine Nickel Catalysts Covalently Linked to Silica Supports via Substituents on Acenaphthequinone-Backbone. Zong K; Hou Y; Zhao X; Sun Y; Liu B; Yang M Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080759 [TBL] [Abstract][Full Text] [Related]
52. Theoretical evaluation of ethylene insertion into chromium alkyl bonds of Cp-donor-based olefin polymerization catalysts. Xu R; Klatt G; Enders M; Köppel H J Phys Chem A; 2012 Jan; 116(3):1077-85. PubMed ID: 22191673 [TBL] [Abstract][Full Text] [Related]
53. Influence of Polyethylene Glycol Unit on Palladium- and Nickel-Catalyzed Ethylene Polymerization and Copolymerization. Zhang D; Chen C Angew Chem Int Ed Engl; 2017 Nov; 56(46):14672-14676. PubMed ID: 28967172 [TBL] [Abstract][Full Text] [Related]
54. A simple and versatile nickel platform for the generation of branched high molecular weight polyolefins. Liang T; Goudari SB; Chen C Nat Commun; 2020 Jan; 11(1):372. PubMed ID: 31953416 [TBL] [Abstract][Full Text] [Related]
55. New Neutral Nickel and Palladium Sandwich Catalysts: Synthesis of Ultra-High Molecular Weight Polyethylene (UHMWPE) via Highly Controlled Polymerization and Mechanistic Studies of Chain Propagation. Tran QH; Brookhart M; Daugulis O J Am Chem Soc; 2020 Apr; 142(15):7198-7206. PubMed ID: 32233435 [TBL] [Abstract][Full Text] [Related]
56. Modulating Polyolefin Copolymer Composition via Redox-Active Olefin Polymerization Catalysts. Anderson WC; Long BK ACS Macro Lett; 2016 Sep; 5(9):1029-1033. PubMed ID: 35614640 [TBL] [Abstract][Full Text] [Related]
57. The Highly Controlled and Efficient Polymerization of Ethylene. Goller A; Obenauf J; Kretschmer WP; Kempe R Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202216464. PubMed ID: 36541599 [TBL] [Abstract][Full Text] [Related]
59. Hydrophilic Catalysts with High Activity and Stability in the Aqueous Polymerization of Ethylene to High-Molecular-Weight-Polyethylene. Lin F; Mecking S Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202203923. PubMed ID: 35385190 [TBL] [Abstract][Full Text] [Related]
60. Systematic studies on dibenzhydryl and pentiptycenyl substituted pyridine-imine nickel(ii) mediated ethylene polymerization. Wang C; Zhang Y; Mu H; Jian Z Dalton Trans; 2020 Apr; 49(15):4824-4833. PubMed ID: 32215431 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]