These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Plasmon-induced carrier polarization in semiconductor nanocrystals. Yin P; Tan Y; Fang H; Hegde M; Radovanovic PV Nat Nanotechnol; 2018 Jun; 13(6):463-467. PubMed ID: 29686293 [TBL] [Abstract][Full Text] [Related]
3. Dual Exciton Polarization in Bipolar CeO Kenny-Wilby A; Wedde ES; Zorn S; Gojsevic M; Radovanovic PV J Am Chem Soc; 2024 Jul; 146(26):17986-17994. PubMed ID: 38914978 [TBL] [Abstract][Full Text] [Related]
4. Size Control of the Mechanism of Exciton Polarization in Metal Oxide Nanocrystals through Fermi Level Pinning. Tandon B; Radovanovic PV ACS Nano; 2023 Jul; 17(14):14069-14078. PubMed ID: 37436105 [TBL] [Abstract][Full Text] [Related]
5. Magnetoplasmon Resonances in Semiconductor Nanocrystals: Potential for a New Information Technology Platform. Yin P; Radovanovic PV ChemSusChem; 2020 Sep; 13(18):4885-4893. PubMed ID: 32681689 [TBL] [Abstract][Full Text] [Related]
6. Controlling the Mechanism of Excitonic Splitting in In Yin P; Hegde M; Tan Y; Chen S; Garnet N; Radovanovic PV ACS Nano; 2018 Nov; 12(11):11211-11218. PubMed ID: 30335948 [TBL] [Abstract][Full Text] [Related]
7. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
8. Cyclotron Splittings in the Plasmon Resonances of Electronically Doped Semiconductor Nanocrystals Probed by Magnetic Circular Dichroism Spectroscopy. Hartstein KH; Schimpf AM; Salvador M; Gamelin DR J Phys Chem Lett; 2017 Apr; 8(8):1831-1836. PubMed ID: 28379708 [TBL] [Abstract][Full Text] [Related]
9. Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Tamarat P; Prin E; Berezovska Y; Moskalenko A; Nguyen TPT; Xia C; Hou L; Trebbia JB; Zacharias M; Pedesseau L; Katan C; Bodnarchuk MI; Kovalenko MV; Even J; Lounis B Nat Commun; 2023 Jan; 14(1):229. PubMed ID: 36646706 [TBL] [Abstract][Full Text] [Related]
12. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. Piryatinski A; Ivanov SA; Tretiak S; Klimov VI Nano Lett; 2007 Jan; 7(1):108-15. PubMed ID: 17212448 [TBL] [Abstract][Full Text] [Related]
14. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
15. Control of exciton spin statistics through spin polarization in organic optoelectronic devices. Wang J; Chepelianskii A; Gao F; Greenham NC Nat Commun; 2012; 3():1191. PubMed ID: 23149736 [TBL] [Abstract][Full Text] [Related]
16. Electronic and optical properties of tapered tetrahedral semiconductor nanocrystals. Na G; Li Y; Wang X; Fu Y; Zhang L Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33836511 [TBL] [Abstract][Full Text] [Related]
17. Morphology-Controlled Synthesis of Hybrid Nanocrystals via a Selenium-Mediated Strategy with Ligand Shielding Effect: The Case of Dual Plasmonic Au-Cu Zou Y; Sun C; Gong W; Yang X; Huang X; Yang T; Lu W; Jiang J ACS Nano; 2017 Apr; 11(4):3776-3785. PubMed ID: 28394555 [TBL] [Abstract][Full Text] [Related]
18. Control of valley polarization in monolayer MoS2 by optical helicity. Mak KF; He K; Shan J; Heinz TF Nat Nanotechnol; 2012 Aug; 7(8):494-8. PubMed ID: 22706698 [TBL] [Abstract][Full Text] [Related]
19. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics. Navarro-Pardo F; Zhao H; Wang ZM; Rosei F Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851 [TBL] [Abstract][Full Text] [Related]
20. Semiconductor nanocrystals: structure, properties, and band gap engineering. Smith AM; Nie S Acc Chem Res; 2010 Feb; 43(2):190-200. PubMed ID: 19827808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]