These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35695979)

  • 1. Computational analysis of mechanical behavior and potential energy of thermoresponsive copper-tantalum nanoalloy.
    Gupta MK; Panwar V; Mahapatra RP
    J Mol Model; 2022 Jun; 28(7):187. PubMed ID: 35695979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the mechanical properties of functionally graded nickel and aluminium alloy at the nanoscale.
    Mitra S; Rahman MH; Motalab M; Rakib T; Bose P
    RSC Adv; 2021 Sep; 11(49):30705-30718. PubMed ID: 35479865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Study on Tension Behaviors of Sub-10 nm NanoPolycrystalline Cu-Ta Alloy.
    Li W; Wang X; Gao L; Lu Y; Wang W
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure evolution and the deformation mechanism in nanocrystalline superior-deformed tantalum.
    Li P; Wang A; Qi M; Zhao C; Li Z; Zhanhong W; Koval V; Yan H
    Nanoscale; 2024 Feb; 16(9):4826-4840. PubMed ID: 38312054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties and Deformation Mechanisms of Nanocrystalline U-10Mo Alloys by Molecular Dynamics Simulation.
    Ou X; Shen Y; Yang Y; You Z; Wang P; Yang Y; Tian X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on mechanical behaviors of Cu-Ni binary alloy nanopillars: a molecular dynamics study.
    Rahman MM; Islam MS; Anjum N
    J Mol Model; 2020 Jul; 26(8):214. PubMed ID: 32705399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics.
    Jang HW; Hong JW
    Materials (Basel); 2020 Apr; 13(9):. PubMed ID: 32365697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the deformation behavior and mechanical characteristics of polycrystalline chromium-nickel alloys using molecular dynamics.
    Bui TX; Fang TH; Lee CI
    J Mol Model; 2022 Sep; 28(10):328. PubMed ID: 36138158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Study for the Tantalum and Tantalum-Tungsten Alloy Threshold Displacement Energy under Local Strain.
    Bany Salman M; Park M; Banisalman MJ
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under <100> Tensile Loading: A Molecular Dynamics Study.
    Li WB; Li K; Fan KQ; Zhang DX; Wang WD
    Nanoscale Res Lett; 2018 Apr; 13(1):118. PubMed ID: 29693209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Dynamics Study on Mechanical Properties of Nanopolycrystalline Cu-Sn Alloy.
    Zhang G; Zhao J; Wang P; Li X; Liu Y; Fu X
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic simulation study of tensile deformation in nanocrystalline and single-crystal Au.
    Wu CD; Tsai HW
    J Mol Model; 2017 Apr; 23(4):114. PubMed ID: 28289955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tensile mechanical performance of Ni-Co alloy nanowires by molecular dynamics simulation.
    Lu X; Yang P; Luo J; Ren J; Xue H; Ding Y
    RSC Adv; 2019 Aug; 9(44):25817-25828. PubMed ID: 35530058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers.
    Pham VT; Fang TH
    Sci Rep; 2020 Sep; 10(1):15082. PubMed ID: 32934331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explosive weld joint characteristics of Copper-Tantalum via simulation.
    Nguyen VT; Thu Nhu VT; Vo XT
    Comput Biol Med; 2024 May; 174():108471. PubMed ID: 38608324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy.
    Raducanu D; Vasilescu E; Cojocaru VD; Cinca I; Drob P; Vasilescu C; Drob SI
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1421-30. PubMed ID: 21783152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High pressure torsion induced lowering of Young's modulus in high strength TNZT alloy for bio-implant applications.
    Maity T; Balcı Ö; Gammer C; Ivanov E; Eckert J; Prashanth KG
    J Mech Behav Biomed Mater; 2020 Aug; 108():103839. PubMed ID: 32469711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.