These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35695993)

  • 1. Decoding violated sensory expectations from the auditory cortex of anaesthetised mice: Hierarchical recurrent neural network depicts separate 'danger' and 'safety' units.
    O'Reilly JA; Angsuwatanakul T; Wehrman J
    Eur J Neurosci; 2022 Aug; 56(3):4154-4175. PubMed ID: 35695993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling mouse auditory response dynamics along a continuum of consciousness using a deep recurrent neural network.
    O'Reilly JA
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36108616
    [No Abstract]   [Full Text] [Related]  

  • 3. Recurrent Neural Network Model of Human Event-related Potentials in Response to Intensity Oddball Stimulation.
    O'Reilly JA
    Neuroscience; 2022 Nov; 504():63-74. PubMed ID: 36228828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural Signatures of Auditory Perceptual Bistability Revealed by Large-Scale Human Intracranial Recordings.
    Curtu R; Wang X; Brunton BW; Nourski KV
    J Neurosci; 2019 Aug; 39(33):6482-6497. PubMed ID: 31189576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity.
    Farley BJ; Quirk MC; Doherty JJ; Christian EP
    J Neurosci; 2010 Dec; 30(49):16475-84. PubMed ID: 21147987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Earliest Experience of a Relatively Rare Sound But Not a Frequent Sound Causes Long-Term Changes in the Adult Auditory Cortex.
    Mehra M; Mukesh A; Bandyopadhyay S
    J Neurosci; 2022 Feb; 42(8):1454-1476. PubMed ID: 34949693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound- and current-driven laminar profiles and their application method mimicking acoustic responses in the mouse auditory cortex in vivo.
    Muramatsu S; Toda M; Nishikawa J; Tateno T
    Brain Res; 2019 Oct; 1721():146312. PubMed ID: 31323198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy.
    Althen H; Grimm S; Escera C
    Eur J Neurosci; 2013 Nov; 38(10):3448-55. PubMed ID: 23992232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classical and controlled auditory mismatch responses to multiple physical deviances in anaesthetised and conscious mice.
    O'Reilly JA; Conway BA
    Eur J Neurosci; 2021 Mar; 53(6):1839-1854. PubMed ID: 33289193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review.
    Paavilainen P
    Int J Psychophysiol; 2013 May; 88(2):109-23. PubMed ID: 23542165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attenuation of Responses to Self-Generated Sounds in Auditory Cortical Neurons.
    Rummell BP; Klee JL; Sigurdsson T
    J Neurosci; 2016 Nov; 36(47):12010-12026. PubMed ID: 27881785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of nonlinear dynamics underlying neural activity related to auditory induction in the rat auditory cortex.
    Noto M; Nishikawa J; Tateno T
    Neuroscience; 2016 Mar; 318():58-83. PubMed ID: 26772432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical processing of pitch: Model-based encoding and decoding of auditory fMRI responses to real-life sounds.
    De Angelis V; De Martino F; Moerel M; Santoro R; Hausfeld L; Formisano E
    Neuroimage; 2018 Oct; 180(Pt A):291-300. PubMed ID: 29146377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological evidence of memory-based detection of auditory regularity violations in anesthetized mice.
    Kurkela JLO; Lipponen A; Kyläheiko I; Astikainen P
    Sci Rep; 2018 Feb; 8(1):3027. PubMed ID: 29445171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Electric Circuit Model of Central Auditory Processing that Replicates Low-level Features of the Mouse Mismatch Response.
    O'Reilly JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():772-776. PubMed ID: 36086361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband Dynamics Rather than Frequency-Specific Rhythms Underlie Prediction Error in the Primate Auditory Cortex.
    Canales-Johnson A; Teixeira Borges AF; Komatsu M; Fujii N; Fahrenfort JJ; Miller KJ; Noreika V
    J Neurosci; 2021 Nov; 41(45):9374-9391. PubMed ID: 34645605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Frequency-Specific Tone Predictions in the Human Auditory Cortex at High Spatial Resolution.
    Berlot E; Formisano E; De Martino F
    J Neurosci; 2018 May; 38(21):4934-4942. PubMed ID: 29712781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.