These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35696570)

  • 1. Heterogeneous lattice strain strengthening in severely distorted crystalline solids.
    Li J; Chen Y; He Q; Xu X; Wang H; Jiang C; Liu B; Fang Q; Liu Y; Yang Y; Liaw PK; Liu CT
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2200607119. PubMed ID: 35696570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastrong Medium-Entropy Single-Phase Alloys Designed via Severe Lattice Distortion.
    Sohn SS; Kwiatkowski da Silva A; Ikeda Y; Körmann F; Lu W; Choi WS; Gault B; Ponge D; Neugebauer J; Raabe D
    Adv Mater; 2019 Feb; 31(8):e1807142. PubMed ID: 30592339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy.
    Ma E; Wu X
    Nat Commun; 2019 Dec; 10(1):5623. PubMed ID: 31819051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strengthening of biomedical Ni-free Co-Cr-Mo alloy by multipass "low-strain-per-pass" thermomechanical processing.
    Mori M; Yamanaka K; Sato S; Tsubaki S; Satoh K; Kumagai M; Imafuku M; Shobu T; Chiba A
    Acta Biomater; 2015 Dec; 28():215-224. PubMed ID: 26384701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screw-Dislocation-Induced Strengthening-Toughening Mechanisms in Complex Layered Materials: The Case Study of Tobermorite.
    Zhang N; Carrez P; Shahsavari R
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1496-1506. PubMed ID: 28009497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximum strength and dislocation patterning in multi-principal element alloys.
    Cao P
    Sci Adv; 2022 Nov; 8(45):eabq7433. PubMed ID: 36351027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.
    Li Z; Pradeep KG; Deng Y; Raabe D; Tasan CC
    Nature; 2016 Jun; 534(7606):227-30. PubMed ID: 27279217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight Multiprincipal Element Alloys with Excellent Mechanical Properties at Room and Cryogenic Temperatures.
    Lin G; Guo R; Shi X; Han L; Qiao J
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-Scale Insights into the Deformation Mechanism of the Microstructures in Precipitation-Strengthening Alloys.
    Wei C; Tang S; Kong Y; Shuai X; Mao H; Du Y
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys.
    Wei Q; Xu X; Shen Q; Luo G; Zhang J; Li J; Fang Q; Liu CT; Chen M; Nieh TG; Chen J
    Sci Adv; 2022 Jul; 8(27):eabo2068. PubMed ID: 35857469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys.
    Wang L; Ding J; Chen S; Jin K; Zhang Q; Cui J; Wang B; Chen B; Li T; Ren Y; Zheng S; Ming K; Lu W; Hou J; Sha G; Liang J; Wang L; Xue Y; Ma E
    Nat Mater; 2023 Aug; 22(8):950-957. PubMed ID: 37037961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes.
    Lei Z; Liu X; Wu Y; Wang H; Jiang S; Wang S; Hui X; Wu Y; Gault B; Kontis P; Raabe D; Gu L; Zhang Q; Chen H; Wang H; Liu J; An K; Zeng Q; Nieh TG; Lu Z
    Nature; 2018 Nov; 563(7732):546-550. PubMed ID: 30429610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways.
    Li QJ; Sheng H; Ma E
    Nat Commun; 2019 Aug; 10(1):3563. PubMed ID: 31395881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropic effect on the rate of dislocation nucleation.
    Ryu S; Kang K; Cai W
    Proc Natl Acad Sci U S A; 2011 Mar; 108(13):5174-8. PubMed ID: 21402933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Strength and Plasticity of CoCrNiAl
    Gu XH; Meng YQ; Chang H; Bai TX; Ma SG; Zhang YQ; Song WD; Li ZQ
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile Behaviors and Strain Hardening Mechanisms in a High-Mn Steel with Heterogeneous Microstructure.
    Zhang S; Liu Y; Wang J; Qin S; Wu X; Yuan F
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation.
    Jiang S; Wang H; Wu Y; Liu X; Chen H; Yao M; Gault B; Ponge D; Raabe D; Hirata A; Chen M; Wang Y; Lu Z
    Nature; 2017 Apr; 544(7651):460-464. PubMed ID: 28397822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced lattice distortion, yield strength, critical resolved shear stress, and improving mechanical properties of transition-metals doped CrCoNi medium entropy alloy.
    Ali ML
    RSC Adv; 2021 Jul; 11(38):23719-23724. PubMed ID: 35479811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational property predictions of Ta-Nb-Hf-Zr high-entropy alloys.
    Mishra S; Maiti S; Rai B
    Sci Rep; 2021 Mar; 11(1):4815. PubMed ID: 33649425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.