These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 35696639)

  • 1. ELSSI: parallel SNP-SNP interactions detection by ensemble multi-type detectors.
    Wang X; Cao X; Feng Y; Guo M; Yu G; Wang J
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information.
    Cao X; Yu G; Liu J; Jia L; Wang J
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30072632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
    Tuo S; Li C; Liu F; Zhu Y; Chen T; Feng Z; Liu H; Li A
    Interdiscip Sci; 2022 Dec; 14(4):814-832. PubMed ID: 35788965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding type 2 diabetes causal single nucleotide polymorphism combinations and functional modules from genome-wide association data.
    Kang C; Yu H; Yi GS
    BMC Med Inform Decis Mak; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 23566118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide SNP discovery in walnut with an AGSNP pipeline updated for SNP discovery in allogamous organisms.
    You FM; Deal KR; Wang J; Britton MT; Fass JN; Lin D; Dandekar AM; Leslie CA; Aradhya M; Luo MC; Dvorak J
    BMC Genomics; 2012 Jul; 13():354. PubMed ID: 22849334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Spherical Evolutionary Multi-Objective (SEMO) Algorithm for Identifying Disease Multi-Locus SNP Interactions.
    Ren F; Li S; Wen Z; Liu Y; Tang D
    Genes (Basel); 2023 Dec; 15(1):. PubMed ID: 38275593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies.
    Yang C; He Z; Wan X; Yang Q; Xue H; Yu W
    Bioinformatics; 2009 Feb; 25(4):504-11. PubMed ID: 19098029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution.
    Cao X; Liu J; Guo M; Wang J
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):139. PubMed ID: 31888641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PLANET-SNP pipeline: PLants based ANnotation and Establishment of True SNP pipeline.
    Bhardwaj A; Bag SK
    Genomics; 2019 Sep; 111(5):1066-1077. PubMed ID: 31533899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Searching Genome-Wide Multi-Locus Associations for Multiple Diseases Based on Bayesian Inference.
    Guo X; Zhang J; Cai Z; Du DZ; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(3):600-610. PubMed ID: 26887006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies.
    Jing PJ; Shen HB
    Bioinformatics; 2015 Mar; 31(5):634-41. PubMed ID: 25338719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiSeeker: Detecting High-Order SNP Interactions Based on Pairwise SNP Combinations.
    Liu J; Yu G; Jiang Y; Wang J
    Genes (Basel); 2017 May; 8(6):. PubMed ID: 28561745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS.
    Merelli I; Calabria A; Cozzi P; Viti F; Mosca E; Milanesi L
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S9. PubMed ID: 23369106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed multi-objective optimization for SNP-SNP interaction detection.
    Li F; Zhao Y; Xu T; Zhang Y
    Methods; 2024 Jan; 221():55-64. PubMed ID: 38061496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2009 Jan; 10():13. PubMed ID: 19134182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide SNP identification in multiple morphotypes of allohexaploid tall fescue (Festuca arundinacea Schreb).
    Hand ML; Cogan NO; Forster JW
    BMC Genomics; 2012 Jun; 13():219. PubMed ID: 22672128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-gene interaction filtering with ensemble of filters.
    Yang P; Ho JW; Yang YH; Zhou BB
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S10. PubMed ID: 21342539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Markov blanket-based method for detecting causal SNPs in GWAS.
    Han B; Park M; Chen XW
    BMC Bioinformatics; 2010 Apr; 11 Suppl 3(Suppl 3):S5. PubMed ID: 20438652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.