These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35696645)

  • 1. Acetylacetone Interferes with Carbon and Nitrogen Metabolism of
    Yilimulati M; Zhou L; Shevela D; Zhang S
    Environ Sci Technol; 2022 Jul; 56(13):9683-9692. PubMed ID: 35696645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Photosynthesis in Bloom-Forming Cyanobacteria with the Simplest β-Diketone.
    Yilimulati M; Jin J; Wang X; Wang X; Shevela D; Wu B; Wang K; Zhou L; Jia Y; Pan B; Govindjee G; Zhang S
    Environ Sci Technol; 2021 Oct; 55(20):14173-14184. PubMed ID: 34590827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different anti-algal control mechanisms in Microcystis aeruginosa induced by robinin or tannin rich plants.
    Gil CS; Eom SH
    Chemosphere; 2023 May; 323():138202. PubMed ID: 36849021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenite-Catalyzed Reaction between Benzoquinone and Acetylacetone Deciphered the Enhanced Inhibition on
    Zhang C; Zhang G; Jin J; Zheng H; Zhou Z; Zhang S
    Environ Sci Technol; 2023 Apr; 57(15):6188-6195. PubMed ID: 37011377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic survey on the microcystins production and growth of Microcystis aeruginosa under nitrogen starvation.
    Zhou Y; Li X; Xia Q; Dai R
    Sci Total Environ; 2020 Jan; 700():134501. PubMed ID: 31689655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms.
    Yang X; Bi Y; Ma X; Dong W; Wang X; Wang S
    J Hazard Mater; 2022 Apr; 428():128276. PubMed ID: 35051775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dark adaptation and ability of pulse-amplitude modulated (PAM) fluorometry to identify nutrient limitation in the bloom-forming cyanobacterium, Microcystis aeruginosa (Kützing).
    Perri KA; Manning SR; Watson SB; Fowler NL; Boyer GL
    J Photochem Photobiol B; 2021 Jun; 219():112186. PubMed ID: 33892284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis.
    Wu D; Yang C; Zhang X; Hou X; Zhang S; Dai X; Zhang X; Igarashi Y; Luo F
    Sci Total Environ; 2022 Feb; 806(Pt 4):150719. PubMed ID: 34606873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms.
    Yu B; Li X; He M; Li Y; Ding J; Zhong Y; Zhang H
    J Hazard Mater; 2023 Jan; 441():129940. PubMed ID: 36108496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between Photosynthetic Capacity and Microcystin Production in Toxic
    Wang X; Wang P; Wang C; Qian J; Feng T; Yang Y
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30205471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between Microcystis aeruginosa and coexisting bisphenol A at different nitrogen levels.
    Yang M; Wang X
    J Hazard Mater; 2019 May; 369():132-141. PubMed ID: 30776596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental factors associated with cyanobacterial assemblages in a mesotrophic subtropical plateau lake: A focus on bloom toxicity.
    Hu L; Shan K; Huang L; Li Y; Zhao L; Zhou Q; Song L
    Sci Total Environ; 2021 Jul; 777():146052. PubMed ID: 33677307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer.
    Schuller JM; Birrell JA; Tanaka H; Konuma T; Wulfhorst H; Cox N; Schuller SK; Thiemann J; Lubitz W; Sétif P; Ikegami T; Engel BD; Kurisu G; Nowaczyk MM
    Science; 2019 Jan; 363(6424):257-260. PubMed ID: 30573545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. β-cyclocitral induced rapid cell death of Microcystis aeruginosa.
    Wang X; Cao H; Zhu Y; Zhou T; Teng F; Tao Y
    Environ Pollut; 2024 May; 348():123824. PubMed ID: 38513945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological, biochemical and transcriptional responses of cyanobacteria to environmentally relevant concentrations of a typical antibiotic-roxithromycin.
    Xin R; Yu X; Fan J
    Sci Total Environ; 2022 Mar; 814():152703. PubMed ID: 34973318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community successions and their dynamic functions during harmful cyanobacterial blooms in a freshwater lake.
    Li H; Barber M; Lu J; Goel R
    Water Res; 2020 Oct; 185():116292. PubMed ID: 33086464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of light color on interspecific competition between Microcystis aeruginosa and Chlorella pyrenoidosa in batch experiment.
    Tan X; Zhang D; Duan Z; Parajuli K; Hu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):344-352. PubMed ID: 31788731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unleashing the power of acetylacetone: Effective control of harmful cyanobacterial blooms with ecological safety.
    Peng P; Zhou L; Yilimulati M; Zhang S
    Sci Total Environ; 2024 Feb; 912():168644. PubMed ID: 38000755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation.
    Ren L; Wang P; Wang C; Paerl HW; Wang H
    Environ Pollut; 2020 Jan; 256():113441. PubMed ID: 31672370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Phenolic Pollution on Interspecific Competition between
    Tan X; Dai K; Parajuli K; Hang X; Duan Z; Hu Y
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.