These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35696761)

  • 41. Phenolic acids and derivatives: studies on the relationship among structure, radical scavenging activity, and physicochemical parameters.
    Silva FA; Borges F; Guimarães C; Lima JL; Matos C; Reis S
    J Agric Food Chem; 2000 Jun; 48(6):2122-6. PubMed ID: 10888509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone.
    Wang LF; Zhang HY
    Bioorg Med Chem Lett; 2003 Nov; 13(21):3789-92. PubMed ID: 14552780
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-property relationships of trimetazidine derivatives and model compounds as potential antioxidants.
    Ancerewicz J; Migliavacca E; Carrupt PA; Testa B; Brée F; Zini R; Tillement JP; Labidalle S; Guyot D; Chauvet-Monges AM; Crevat A; Le Ridant A
    Free Radic Biol Med; 1998 Jul; 25(1):113-20. PubMed ID: 9655529
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment.
    Alberto ME; Russo N; Grand A; Galano A
    Phys Chem Chem Phys; 2013 Apr; 15(13):4642-50. PubMed ID: 23423333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic and Kinetic Studies of the Radical Scavenging Activity of 5-
    Ngoc TD; Le TN; Nguyen TVA; Mechler A; Hoa NT; Nam NL; Vo QV
    J Phys Chem B; 2022 Jan; 126(3):702-707. PubMed ID: 35029995
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coumarin 314 free radical cation: formation, properties, and reactivity toward phenolic antioxidants.
    Aspée A; Alarcon E; Pino E; Gorelsky SI; Scaiano JC
    J Phys Chem A; 2012 Jan; 116(1):199-206. PubMed ID: 22142362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Theoretical Study on the Antioxidant Activity of Piceatannol and Isorhapontigenin Scavenging Nitric Oxide and Nitrogen Dioxide Radicals.
    Lu Y; Wang A; Shi P; Zhang H
    PLoS One; 2017; 12(1):e0169773. PubMed ID: 28068377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radical scavenging activity of natural antioxidants and drugs: Development of a combined machine learning and quantum chemistry protocol.
    Muraro C; Polato M; Bortoli M; Aiolli F; Orian L
    J Chem Phys; 2020 Sep; 153(11):114117. PubMed ID: 32962380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study.
    Iuga C; Alvarez-Idaboy JR; Russo N
    J Org Chem; 2012 Apr; 77(8):3868-77. PubMed ID: 22475027
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Theoretical Determination of the pK a Values of Betalamic Acid Related to the Free Radical Scavenger Capacity: Comparison Between Empirical and Quantum Chemical Methods.
    Tutone M; Lauria A; Almerico AM
    Interdiscip Sci; 2016 Jun; 8(2):177-185. PubMed ID: 26253717
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The reactivity of neurotransmitters and their metabolites towards various nitrogen-centered radicals: Experimental, theoretical, and biotoxicity evaluation.
    Lončar A; Negrojević L; Dimitrić-Marković J; Dimić D
    Comput Biol Chem; 2021 Dec; 95():107573. PubMed ID: 34562727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Computational study of the structure-free radical scavenging relationship of procyanidins.
    Mendoza-Wilson AM; Castro-Arredondo SI; Balandrán-Quintana RR
    Food Chem; 2014 Oct; 161():155-61. PubMed ID: 24837934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. From phenols to quinones: Thermodynamics of radical scavenging activity of para-substituted phenols.
    Michalík M; Poliak P; Lukeš V; Klein E
    Phytochemistry; 2019 Oct; 166():112077. PubMed ID: 31374519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uric and 1-methyluric acids: metabolic wastes or antiradical protectors?
    León-Carmona JR; Galano A
    J Phys Chem B; 2011 Dec; 115(51):15430-8. PubMed ID: 22097927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of dihydrochalcones and related derivatives and their scavenging and antioxidant activity against oxygen and nitrogen radical species.
    Bentes AL; Borges RS; Monteiro WR; de Macedo LG; Alves CN
    Molecules; 2011 Feb; 16(2):1749-60. PubMed ID: 21339710
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid.
    Zheng YZ; Deng G; Guo R; Fu ZM; Chen DF
    Phytochemistry; 2019 Apr; 160():19-24. PubMed ID: 30669059
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of phenolic hydroxy groups in the free radical scavenging activity of betalains.
    Gandía-Herrero F; Escribano J; García-Carmona F
    J Nat Prod; 2009 Jun; 72(6):1142-6. PubMed ID: 19456119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Theoretical investigation of the effect of sugar substitution on the antioxidant properties of flavonoids.
    Lespade L; Bercion S
    Free Radic Res; 2012 Mar; 46(3):346-58. PubMed ID: 22257113
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic Reaction Mechanism of Sinapic Acid Scavenging NO2 and OH Radicals: A Theoretical Study.
    Lu Y; Wang A; Shi P; Zhang H; Li Z
    PLoS One; 2016; 11(9):e0162729. PubMed ID: 27622460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.