These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35696787)

  • 1. Brownian dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions.
    Lorenzo T; Marco L
    J Colloid Interface Sci; 2022 Oct; 624():637-649. PubMed ID: 35696787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hydrodynamic interactions on the aggregation kinetics of sedimenting colloidal particles.
    Turetta L; Lattuada M
    Soft Matter; 2022 Feb; 18(8):1715-1730. PubMed ID: 35147636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Rotne-Prager-Yamakawa approximation for periodic systems in a shear flow.
    Mizerski KA; Wajnryb E; Zuk PJ; Szymczak P
    J Chem Phys; 2014 May; 140(18):184103. PubMed ID: 24832249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Rotne-Prager-Yamakawa approximation for Brownian dynamics in shear flow in bounded, unbounded, and periodic domains.
    Cichocki B; Szymczak P; Żuk PJ
    J Chem Phys; 2021 Mar; 154(12):124905. PubMed ID: 33810690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model.
    Wani YM; Kovakas PG; Nikoubashman A; Howard MP
    J Chem Phys; 2022 Jan; 156(2):024901. PubMed ID: 35032985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules.
    Tworek JW; Elcock AH
    J Chem Theory Comput; 2023 Aug; 19(15):5099-5111. PubMed ID: 37409946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of hydrodynamic interactions on lane formation in oppositely charged driven colloids.
    Rex M; Löwen H
    Eur Phys J E Soft Matter; 2008; 26(1-2):143-50. PubMed ID: 18324352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R
    J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure of sheared monosized colloidal suspensions resulting from hydrodynamic and electrostatic interactions.
    Xu B; Gilchrist JF
    J Chem Phys; 2014 May; 140(20):204903. PubMed ID: 24880321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPYFMM: Parallel Adaptive Fast Multipole Method for Rotne-Prager-Yamakawa Tensor in Biomolecular Hydrodynamics Simulations.
    Guan W; Cheng X; Huang J; Huber G; Li W; McCammon JA; Zhang B
    Comput Phys Commun; 2018 Jun; 227():99-108. PubMed ID: 30147116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction.
    Hoda N; Kumar S
    J Chem Phys; 2007 Dec; 127(23):234902. PubMed ID: 18154410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-mechanics of electrostatically stabilized suspensions of cellulose nanofibrils under steady state shear flow.
    Martoïa F; Dumont PJ; Orgéas L; Belgacem MN; Putaux JL
    Soft Matter; 2016 Feb; 12(6):1721-35. PubMed ID: 26725654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid sampling of stochastic displacements in Brownian dynamics simulations with stresslet constraints.
    Fiore AM; Swan JW
    J Chem Phys; 2018 Jan; 148(4):044114. PubMed ID: 29390810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.