These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35696906)
1. SlSnRK2.3 interacts with SlSUI1 to modulate high temperature tolerance via Abscisic acid (ABA) controlling stomatal movement in tomato. Li Y; Gao Z; Lu J; Wei X; Qi M; Yin Z; Li T Plant Sci; 2022 Aug; 321():111305. PubMed ID: 35696906 [TBL] [Abstract][Full Text] [Related]
2. Interactions of ABA signaling core components (SlPYLs, SlPP2Cs, and SlSnRK2s) in tomato (Solanum lycopersicon). Chen P; Sun YF; Kai WB; Liang B; Zhang YS; Zhai XW; Jiang L; Du YW; Leng P J Plant Physiol; 2016 Oct; 205():67-74. PubMed ID: 27626883 [TBL] [Abstract][Full Text] [Related]
3. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Sun L; Wang YP; Chen P; Ren J; Ji K; Li Q; Li P; Dai SJ; Leng P J Exp Bot; 2011 Nov; 62(15):5659-69. PubMed ID: 21873532 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of SlWRKY6 enhances drought tolerance by strengthening antioxidant defense and stomatal closure via ABA signaling in Solanum lycopersicum L. Chen H; Shi Y; An L; Yang X; Liu J; Dai Z; Zhang Y; Li T; Ahammed GJ Plant Physiol Biochem; 2024 Aug; 213():108855. PubMed ID: 38917736 [TBL] [Abstract][Full Text] [Related]
5. ABA signaling rather than ABA metabolism is involved in trehalose-induced drought tolerance in tomato plants. Yu W; Zhao R; Wang L; Zhang S; Li R; Sheng J; Shen L Planta; 2019 Aug; 250(2):643-655. PubMed ID: 31144110 [TBL] [Abstract][Full Text] [Related]
6. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. Loukehaich R; Wang T; Ouyang B; Ziaf K; Li H; Zhang J; Lu Y; Ye Z J Exp Bot; 2012 Sep; 63(15):5593-606. PubMed ID: 22915741 [TBL] [Abstract][Full Text] [Related]
7. Stress-responsive tomato gene SlGRAS4 function in drought stress and abscisic acid signaling. Liu Y; Wen L; Shi Y; Su D; Lu W; Cheng Y; Li Z Plant Sci; 2021 Mar; 304():110804. PubMed ID: 33568303 [TBL] [Abstract][Full Text] [Related]
8. The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure. Nir I; Shohat H; Panizel I; Olszewski N; Aharoni A; Weiss D Plant Cell; 2017 Dec; 29(12):3186-3197. PubMed ID: 29150547 [TBL] [Abstract][Full Text] [Related]
9. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Campos JF; Cara B; Pérez-Martín F; Pineda B; Egea I; Flores FB; Fernandez-Garcia N; Capel J; Moreno V; Angosto T; Lozano R; Bolarin MC Plant Biotechnol J; 2016 Jun; 14(6):1345-56. PubMed ID: 26578112 [TBL] [Abstract][Full Text] [Related]
10. Abscisic Acid-Induced Reactive Oxygen Species Are Modulated by Flavonols to Control Stomata Aperture. Watkins JM; Chapman JM; Muday GK Plant Physiol; 2017 Dec; 175(4):1807-1825. PubMed ID: 29051198 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of PpSnRK1α in tomato enhanced salt tolerance by regulating ABA signaling pathway and reactive oxygen metabolism. Wang WR; Liang JH; Wang GF; Sun MX; Peng FT; Xiao YS BMC Plant Biol; 2020 Mar; 20(1):128. PubMed ID: 32216751 [TBL] [Abstract][Full Text] [Related]
12. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Du M; Zhai Q; Deng L; Li S; Li H; Yan L; Huang Z; Wang B; Jiang H; Huang T; Li CB; Wei J; Kang L; Li J; Li C Plant Cell; 2014 Jul; 26(7):3167-84. PubMed ID: 25005917 [TBL] [Abstract][Full Text] [Related]
13. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000. Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417 [TBL] [Abstract][Full Text] [Related]
14. Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Xia XJ; Gao CJ; Song LX; Zhou YH; Shi K; Yu JQ Plant Cell Environ; 2014 Sep; 37(9):2036-50. PubMed ID: 24428600 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712 [TBL] [Abstract][Full Text] [Related]
16. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. Liu X; Dong X; Liu Z; Shi Z; Jiang Y; Qi M; Xu T; Li T Plant Mol Biol; 2016 Oct; 92(3):313-36. PubMed ID: 27542006 [TBL] [Abstract][Full Text] [Related]
17. SlSTE1 promotes abscisic acid-dependent salt stress-responsive pathways via improving ion homeostasis and reactive oxygen species scavenging in tomato. Meng X; Cai J; Deng L; Li G; Sun J; Han Y; Dong T; Liu Y; Xu T; Liu S; Li Z; Zhu M J Integr Plant Biol; 2020 Dec; 62(12):1942-1966. PubMed ID: 32618097 [TBL] [Abstract][Full Text] [Related]
18. MicroRNA162 regulates stomatal conductance in response to low night temperature stress Li Y; Liu Y; Gao Z; Wang F; Xu T; Qi M; Liu Y; Li T Front Plant Sci; 2023; 14():1045112. PubMed ID: 36938045 [TBL] [Abstract][Full Text] [Related]
19. Tetratricopeptide repeat protein SlREC2 positively regulates cold tolerance in tomato. Zhang Y; Peng Y; Liu J; Yan J; Zhu K; Sun X; Bu X; Wang X; Ahammed GJ; Liu Y; Sun Z; Qi M; Wang F; Li T Plant Physiol; 2023 May; 192(1):648-665. PubMed ID: 36760172 [TBL] [Abstract][Full Text] [Related]
20. Stomatal effects and ABA metabolism mediate differential regulation of leaf and flower cooling in tomato cultivars exposed to heat and drought stress. Bjerring Jensen N; Vrobel O; Akula Nageshbabu N; De Diego N; Tarkowski P; Ottosen CO; Zhou R J Exp Bot; 2024 Mar; 75(7):2156-2175. PubMed ID: 38207009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]