BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35696932)

  • 41. G proteins as regulators in ethylene-mediated hypoxia signaling.
    Steffens B; Sauter M
    Plant Signal Behav; 2010 Apr; 5(4):375-8. PubMed ID: 20948297
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species.
    Yamauchi T; Rajhi I; Nakazono M
    Plant Signal Behav; 2011 May; 6(5):759-61. PubMed ID: 21502817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.).
    Chae HS; Cho YG; Park MY; Lee MC; Eun MY; Kang BG; Kim WT
    Plant Cell Physiol; 2000 Mar; 41(3):354-62. PubMed ID: 10805599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Heterotrimeric G protein γ subunit DEP1 is involved in hydrogen peroxide signaling and promotes aerenchyma formation in rice roots.
    Chen Y; Chen Y; Zhang Y; Zhang D; Li G; Wei J; Hua X; Lv B; Liu L
    Plant Signal Behav; 2021 May; 16(5):1889251. PubMed ID: 33632064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein.
    Chen H; Ma B; Zhou Y; He SJ; Tang SY; Lu X; Xie Q; Chen SY; Zhang JS
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4513-4518. PubMed ID: 29632179
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calcium ion dependency of ethylene production in segments of primary roots of Zea mays.
    Hasenstein KH; Evans ML
    Physiol Plant; 1986; 67():570-5. PubMed ID: 11538216
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative spatiotemporal analysis of root aerenchyma formation processes in maize due to sulphate, nitrate or phosphate deprivation.
    Siyiannis VF; Protonotarios VE; Zechmann B; Chorianopoulou SN; Müller M; Hawkesford MJ; Bouranis DL
    Protoplasma; 2012 Jul; 249(3):671-86. PubMed ID: 21870204
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Control of water uptake by rice ( Oryza sativa L.): role of the outer part of the root.
    Ranathunge K; Steudle E; Lafitte R
    Planta; 2003 Jun; 217(2):193-205. PubMed ID: 12783327
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The GDSL Lipase MHZ11 Modulates Ethylene Signaling in Rice Roots.
    Zhao H; Ma B; Duan KX; Li XK; Lu X; Yin CC; Tao JJ; Wei W; Zhang WK; Xin PY; Man Lam S; Chu JF; Shui GH; Chen SY; Zhang JS
    Plant Cell; 2020 May; 32(5):1626-1643. PubMed ID: 32184349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling.
    Qi X; Li Q; Ma X; Qian C; Wang H; Ren N; Shen C; Huang S; Xu X; Xu Q; Chen X
    Plant Cell Environ; 2019 May; 42(5):1458-1470. PubMed ID: 30556134
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean.
    Thomas AL; Guerreiro SM; Sodek L
    Ann Bot; 2005 Dec; 96(7):1191-8. PubMed ID: 16199486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide is essential for the development of aerenchyma in wheat roots under hypoxic stress.
    Wany A; Kumari A; Gupta KJ
    Plant Cell Environ; 2017 Dec; 40(12):3002-3017. PubMed ID: 28857271
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots.
    Zhang Y; Paschold A; Marcon C; Liu S; Tai H; Nestler J; Yeh CT; Opitz N; Lanz C; Schnable PS; Hochholdinger F
    J Exp Bot; 2014 Sep; 65(17):4919-30. PubMed ID: 24928984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency.
    Gong F; Takahashi H; Omori F; Wang W; Mano Y; Nakazono M
    J Exp Bot; 2019 Nov; 70(21):6475-6487. PubMed ID: 31587072
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxygen in the air and oxygen dissolved in the floodwater both sustain growth of aquatic adventitious roots in rice.
    Lin C; Ogorek LLP; Pedersen O; Sauter M
    J Exp Bot; 2021 Feb; 72(5):1879-1890. PubMed ID: 33206163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.
    Yin CC; Ma B; Collinge DP; Pogson BJ; He SJ; Xiong Q; Duan KX; Chen H; Yang C; Lu X; Wang YQ; Zhang WK; Chu CC; Sun XH; Fang S; Chu JF; Lu TG; Chen SY; Zhang JS
    Plant Cell; 2015 Apr; 27(4):1061-81. PubMed ID: 25841037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique.
    Kotula L; Steudle E
    J Exp Bot; 2009; 60(2):567-80. PubMed ID: 19088333
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Programmed cell death and aerenchyma formation in roots.
    Drew MC; He CJ; Morgan PW
    Trends Plant Sci; 2000 Mar; 5(3):123-7. PubMed ID: 10707078
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Root-Bacteria Associations Boost Rhizosheath Formation in Moderately Dry Soil through Ethylene Responses.
    Zhang Y; Du H; Xu F; Ding Y; Gui Y; Zhang J; Xu W
    Plant Physiol; 2020 Jun; 183(2):780-792. PubMed ID: 32220965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypoxia induced non-apoptotic cellular changes during aerenchyma formation in rice (Oryza sativa L.) roots.
    Joshi R; Shukla A; Mani SC; Kumar P
    Physiol Mol Biol Plants; 2010 Jan; 16(1):99-106. PubMed ID: 23572959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.