BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35696932)

  • 61. Transduction of an Ethylene Signal Is Required for Cell Death and Lysis in the Root Cortex of Maize during Aerenchyma Formation Induced by Hypoxia.
    He CJ; Morgan PW; Drew MC
    Plant Physiol; 1996 Oct; 112(2):463-472. PubMed ID: 12226403
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).
    Hu B; Henry A; Brown KM; Lynch JP
    Ann Bot; 2014 Jan; 113(1):181-9. PubMed ID: 24249807
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays.
    Lee JS; Chang W-K ; Evans ML
    Plant Physiol; 1990; 94(4):1770-5. PubMed ID: 11537475
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize.
    Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M
    New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots.
    Pacheco-Villalobos D; Sankar M; Ljung K; Hardtke CS
    PLoS Genet; 2013 Jun; 9(6):e1003564. PubMed ID: 23840182
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lysigenous aerenchyma formation in Arabidopsis is controlled by LESION SIMULATING DISEASE1.
    Mühlenbock P; Plaszczyca M; Plaszczyca M; Mellerowicz E; Karpinski S
    Plant Cell; 2007 Nov; 19(11):3819-30. PubMed ID: 18055613
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamics of Aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize.
    Bouranis DL; Chorianopoulou SN; Kollias C; Maniou P; Protonotarios VE; Siyiannis VF; Hawkesford MJ
    Ann Bot; 2006 May; 97(5):695-704. PubMed ID: 16481362
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ectopic expression of ARGOS8 reveals a role for ethylene in root-lodging resistance in maize.
    Shi J; Drummond BJ; Habben JE; Brugire N; Weers BP; Hakimi SM; Lafitte HR; Schussler JR; Mo H; Beatty M; Zastrow-Hayes G; O'Neill D
    Plant J; 2019 Jan; 97(2):378-390. PubMed ID: 30326542
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Auxin Controlled by Ethylene Steers Root Development.
    Qin H; Huang R
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30463285
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Limited aerenchyma reduces oxygen diffusion and methane emission in paddy.
    Iqbal MF; Liu S; Zhu J; Zhao L; Qi T; Liang J; Luo J; Xiao X; Fan X
    J Environ Manage; 2021 Feb; 279():111583. PubMed ID: 33187783
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cortical Aerenchyma formation in hypocotyl and adventitious roots of Luffa cylindrica subjected to soil flooding.
    Shimamura S; Yoshida S; Mochizuki T
    Ann Bot; 2007 Dec; 100(7):1431-9. PubMed ID: 17921518
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis.
    He W; Brumos J; Li H; Ji Y; Ke M; Gong X; Zeng Q; Li W; Zhang X; An F; Wen X; Li P; Chu J; Sun X; Yan C; Yan N; Xie DY; Raikhel N; Yang Z; Stepanova AN; Alonso JM; Guo H
    Plant Cell; 2011 Nov; 23(11):3944-60. PubMed ID: 22108404
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ethylene enhanced waterlogging tolerance by changing root architecture and inducing aerenchyma formation in maize seedlings.
    Geng S; Lin Z; Xie S; Xiao J; Wang H; Zhao X; Zhou Y; Duan L
    J Plant Physiol; 2023 Aug; 287():154042. PubMed ID: 37348450
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen.
    Zhu J; Liang J; Xu Z; Fan X; Zhou Q; Shen Q; Xu G
    AoB Plants; 2015 Nov; 7():. PubMed ID: 26578743
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Internal aeration and respiration of submerged tomato hypocotyls are enhanced by ethylene-mediated aerenchyma formation and hypertrophy.
    Mignolli F; Todaro JS; Vidoz ML
    Physiol Plant; 2020 May; 169(1):49-63. PubMed ID: 31688957
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Salicylic Acid Enhances Adventitious Root and Aerenchyma Formation in Wheat under Waterlogged Conditions.
    Koramutla MK; Tuan PA; Ayele BT
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163167
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physiological roles for aerenchyma in phosphorus-stressed roots.
    Fan M; Zhu J; Richards C; Brown KM; Lynch JP
    Funct Plant Biol; 2003 Jul; 30(5):493-506. PubMed ID: 32689034
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Distance-to-Time Conversion Using Gompertz Model Reveals Age-Dependent Aerenchyma Formation in Rice Roots.
    Yamauchi T; Nakazono M; Inukai Y; Tsutsumi N
    Plant Physiol; 2020 Aug; 183(4):1424-1427. PubMed ID: 32546569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.