These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 35696936)

  • 1. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH
    Wang Y; Guo H; Yarkony DR
    Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,2
    Wang Y; Guan Y; Guo H; Yarkony DR
    J Chem Phys; 2021 Mar; 154(9):094121. PubMed ID: 33685133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a Unified Analytical Description of Internal Conversion and Intersystem Crossing in the Photodissociation of Thioformaldehyde. I. Diabatic Singlet States.
    Guan Y; Xie C; Guo H; Yarkony DR
    J Chem Theory Comput; 2023 Sep; 19(18):6414-6424. PubMed ID: 37698839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling a Unified Description of Both Internal Conversion and Intersystem Crossing in Formaldehyde: A Global Coupled Quasi-Diabatic Hamiltonian for Its S
    Guan Y; Xie C; Guo H; Yarkony DR
    J Chem Theory Comput; 2021 Jul; 17(7):4157-4168. PubMed ID: 34132545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conical intersection seams in spin-orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces.
    Wang Y; Yarkony DR
    J Chem Phys; 2021 Nov; 155(17):174115. PubMed ID: 34742185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation.
    Zhu X; Yarkony DR
    J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Network Based Quasi-diabatic Representation for S
    Guan Y; Xie C; Guo H; Yarkony DR
    J Phys Chem A; 2020 Dec; 124(49):10132-10142. PubMed ID: 33233892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics.
    Valero R; Truhlar DG
    J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trajectory surface hopping study of propane photodissociation dynamics at 157 nm.
    Rauta AK; Maiti B
    J Chem Phys; 2018 Jul; 149(4):044308. PubMed ID: 30068164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study on the photodissociation of methylamine involving S1, T1, and S0 states.
    Xiao H; Maeda S; Morokuma K
    J Phys Chem A; 2013 Jul; 117(28):5757-64. PubMed ID: 23789818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Neural Network Representation of the Ab Initio Determined Spin-Orbit Interaction in the Diabatic Representation Including the Effects of Conical Intersections.
    Guan Y; Yarkony DR
    J Phys Chem Lett; 2020 Mar; 11(5):1848-1858. PubMed ID: 32062966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-state diabatic potential energy surfaces of ClH
    Yin Z; Guan Y; Fu B; Zhang DH
    Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet-Triplet Gap Molecules.
    Valverde D; Ser CT; Ricci G; Jorner K; Pollice R; Aspuru-Guzik A; Olivier Y
    ACS Appl Mater Interfaces; 2024 May; ():. PubMed ID: 38728616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol.
    Zhang L; Truhlar DG; Sun S
    J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal conversion and intersystem crossing in α,β-enones: a combination of electronic structure calculations and dynamics simulations.
    Cao J; Xie ZZ
    Phys Chem Chem Phys; 2016 Mar; 18(9):6931-45. PubMed ID: 26882275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photorelaxation Pathways of 4-(
    He Z; Xue R; Lei Y; Yu L; Zhu C
    Molecules; 2020 May; 25(9):. PubMed ID: 32397393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride.
    Valero R; Truhlar DG
    J Chem Phys; 2006 Nov; 125(19):194305. PubMed ID: 17129101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonadiabatic dynamics simulations on internal conversion and intersystem crossing processes in gold(i) compounds.
    Liu XY; Li ZW; Fang WH; Cui G
    J Chem Phys; 2018 Jul; 149(4):044301. PubMed ID: 30068207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A diabatization method based upon integrating the diabatic potential gradient difference.
    Li F; Liu X; Ma H; Bian W
    Phys Chem Chem Phys; 2024 Jun; 26(23):16477-16487. PubMed ID: 38656815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation Function Formalism for Triplet Excited State Decay: Combined Spin-Orbit and Nonadiabatic Couplings.
    Peng Q; Niu Y; Shi Q; Gao X; Shuai Z
    J Chem Theory Comput; 2013 Feb; 9(2):1132-43. PubMed ID: 26588756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.