These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35697072)

  • 1. Evolutionary origin and functional diversification of aminotransferases.
    Koper K; Han SW; Pastor DC; Yoshikuni Y; Maeda HA
    J Biol Chem; 2022 Aug; 298(8):102122. PubMed ID: 35697072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical characterization of plant aromatic aminotransferases.
    Koper K; Hataya S; Hall AG; Takasuka TE; Maeda HA
    Methods Enzymol; 2023; 680():35-83. PubMed ID: 36710018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry imaging-based assays for aminotransferase activity reveal a broad substrate spectrum for a previously uncharacterized enzyme.
    de Raad M; Koper K; Deng K; Bowen BP; Maeda HA; Northen TR
    J Biol Chem; 2023 Mar; 299(3):102939. PubMed ID: 36702250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From cofactor to enzymes. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Christen P; Mehta PK
    Chem Rec; 2001; 1(6):436-47. PubMed ID: 11933250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes.
    Yoshimura T; Jhee KH; Soda K
    Biosci Biotechnol Biochem; 1996 Feb; 60(2):181-7. PubMed ID: 9063963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
    Mehta PK; Christen P
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():129-84. PubMed ID: 10800595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the ω-aminotransferase from Paracoccus denitrificans and its phylogenetic relationship with other class III aminotransferases that have biotechnological potential.
    Rausch C; Lerchner A; Schiefner A; Skerra A
    Proteins; 2013 May; 81(5):774-87. PubMed ID: 23239223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structures of aminotransferases Aro8 and Aro9 from Candida albicans and structural insights into their properties.
    Kiliszek A; Rypniewski W; Rząd K; Milewski S; Gabriel I
    J Struct Biol; 2019 Mar; 205(3):26-33. PubMed ID: 30742897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families.
    Alexander FW; Sandmeier E; Mehta PK; Christen P
    Eur J Biochem; 1994 Feb; 219(3):953-60. PubMed ID: 8112347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clues to reaction specificity in PLP-dependent fold type I aminotransferases of monosaccharide biosynthesis.
    Srivastava J; Balaji PV
    Proteins; 2022 Jun; 90(6):1247-1258. PubMed ID: 35067962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Uncommon Active Site of D-Amino Acid Transaminase from
    Bakunova AK; Nikolaeva AY; Rakitina TV; Isaikina TY; Khrenova MG; Boyko KM; Popov VO; Bezsudnova EY
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A subfamily of PLP-dependent enzymes specialized in handling terminal amines.
    Schiroli D; Peracchi A
    Biochim Biophys Acta; 2015 Sep; 1854(9):1200-11. PubMed ID: 25770684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional evolution of PLP-dependent enzymes based on active-site structural similarities.
    Catazaro J; Caprez A; Guru A; Swanson D; Powers R
    Proteins; 2014 Oct; 82(10):2597-608. PubMed ID: 24920327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genomic overview of pyridoxal-phosphate-dependent enzymes.
    Percudani R; Peracchi A
    EMBO Rep; 2003 Sep; 4(9):850-4. PubMed ID: 12949584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations.
    Eliot AC; Kirsch JF
    Annu Rev Biochem; 2004; 73():383-415. PubMed ID: 15189147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme.
    Vacca RA; Giannattasio S; Capitani G; Marra E; Christen P
    BMC Biochem; 2008 Jun; 9():17. PubMed ID: 18565210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of novel pyridoxal-5'-phosphate-dependent enzymes from the human microbiome.
    Fleischman NM; Das D; Kumar A; Xu Q; Chiu HJ; Jaroszewski L; Knuth MW; Klock HE; Miller MD; Elsliger MA; Godzik A; Lesley SA; Deacon AM; Wilson IA; Toney MD
    Protein Sci; 2014 Aug; 23(8):1060-76. PubMed ID: 24888348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of histidinol phosphate aminotransferase (HisC) from Escherichia coli, and its covalent complex with pyridoxal-5'-phosphate and l-histidinol phosphate.
    Sivaraman J; Li Y; Larocque R; Schrag JD; Cygler M; Matte A
    J Mol Biol; 2001 Aug; 311(4):761-76. PubMed ID: 11518529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecificity for the hydrogen transfer of pyridoxal enzyme reactions.
    Soda K; Yoshimura T; Esaki N
    Chem Rec; 2001; 1(5):373-84. PubMed ID: 11933244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.