These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35697134)
21. Performance of the BG1Luc ER TA method in a qHTS format. Ceger P; Allen D; Huang R; Xia M; Casey W ALTEX; 2015; 32(4):287-96. PubMed ID: 26117232 [TBL] [Abstract][Full Text] [Related]
22. AroER tri-screen is a biologically relevant assay for endocrine disrupting chemicals modulating the activity of aromatase and/or the estrogen receptor. Chen S; Zhou D; Hsin LY; Kanaya N; Wong C; Yip R; Sakamuru S; Xia M; Yuan YC; Witt K; Teng C Toxicol Sci; 2014 May; 139(1):198-209. PubMed ID: 24496634 [TBL] [Abstract][Full Text] [Related]
23. AroER tri-screen™ is a novel functional assay to estimate both estrogenic and estrogen precursor activity of chemicals or biological specimens. Kanaya N; Nguyen DM; Lu H; Wang YZ; Hsin LY; Petreas M; Nelson D; Guo W; Reynolds P; Synold T; Chen S Breast Cancer Res Treat; 2015 Jun; 151(2):335-45. PubMed ID: 25962693 [TBL] [Abstract][Full Text] [Related]
24. Relationship between the results of in vitro receptor binding assay to human estrogen receptor alpha and in vivo uterotrophic assay: comparative study with 65 selected chemicals. Akahori Y; Nakai M; Yamasaki K; Takatsuki M; Shimohigashi Y; Ohtaki M Toxicol In Vitro; 2008 Feb; 22(1):225-31. PubMed ID: 17904329 [TBL] [Abstract][Full Text] [Related]
25. Methylparaben stimulates tumor initiating cells in ER+ breast cancer models. Lillo MA; Nichols C; Perry C; Runke S; Krutilina R; Seagroves TN; Miranda-Carboni GA; Krum SA J Appl Toxicol; 2017 Apr; 37(4):417-425. PubMed ID: 27581495 [TBL] [Abstract][Full Text] [Related]
26. The efficacy of endocrine disruptor screening tests in detecting anti-estrogenic effects downstream of receptor-ligand interactions. Takeyoshi M; Yamasaki K; Sawaki M; Nakai M; Noda S; Takatsuki M Toxicol Lett; 2002 Jan; 126(2):91-8. PubMed ID: 11751013 [TBL] [Abstract][Full Text] [Related]
30. High-Throughput Transcriptomics Screen of ToxCast Chemicals in U-2 OS Cells. Bundy JL; Everett LJ; Rogers JD; Nyffeler J; Byrd G; Culbreth M; Haggard DE; Word LJ; Chambers BA; Davidson-Fritz S; Harris F; Willis C; Paul-Friedman K; Shah I; Judson R; Harrill JA Toxicol Appl Pharmacol; 2024 Oct; 491():117073. PubMed ID: 39159848 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of OASIS QSAR Models Using ToxCast™ in Vitro Estrogen and Androgen Receptor Binding Data and Application in an Integrated Endocrine Screening Approach. Bhhatarai B; Wilson DM; Price PS; Marty S; Parks AK; Carney E Environ Health Perspect; 2016 Sep; 124(9):1453-61. PubMed ID: 27152837 [TBL] [Abstract][Full Text] [Related]
32. High-throughput in Vitro Data To Inform Prioritization of Ambient Water Monitoring and Testing for Endocrine Active Chemicals. Heiger-Bernays WJ; Wegner S; Dix DJ Environ Sci Technol; 2018 Jan; 52(2):783-793. PubMed ID: 29214797 [TBL] [Abstract][Full Text] [Related]
33. Evaluation and Optimization of Pharmacokinetic Models for Casey WM; Chang X; Allen DG; Ceger PC; Choksi NY; Hsieh JH; Wetmore BA; Ferguson SS; DeVito MJ; Sprankle CS; Kleinstreuer NC Environ Health Perspect; 2018 Sep; 126(9):97001. PubMed ID: 30192161 [TBL] [Abstract][Full Text] [Related]
34. Cross-species conservation of endocrine pathways: a critical analysis of tier 1 fish and rat screening assays with 12 model chemicals. Ankley GT; Gray LE Environ Toxicol Chem; 2013 Apr; 32(5):1084-7. PubMed ID: 23401061 [TBL] [Abstract][Full Text] [Related]
35. Towards an integrated in vitro strategy for estrogenicity testing. Wang S; Aarts JM; de Haan LH; Argyriou D; Peijnenburg AA; Rietjens IM; Bovee TF J Appl Toxicol; 2014 Sep; 34(9):1031-40. PubMed ID: 24114741 [TBL] [Abstract][Full Text] [Related]
36. Quantitative high-throughput phenotypic screening for environmental estrogens using the E-Morph Screening Assay in combination with in silico predictions. Klutzny S; Kornhuber M; Morger A; Schönfelder G; Volkamer A; Oelgeschläger M; Dunst S Environ Int; 2022 Jan; 158():106947. PubMed ID: 34717173 [TBL] [Abstract][Full Text] [Related]
37. Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites. Pinto CL; Mansouri K; Judson R; Browne P Chem Res Toxicol; 2016 Sep; 29(9):1410-27. PubMed ID: 27509301 [TBL] [Abstract][Full Text] [Related]
38. Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: Retinoic acid as an example. Nyffeler J; Willis C; Harris FR; Taylor LW; Judson R; Everett LJ; Harrill JA Toxicol Appl Pharmacol; 2022 Jun; 444():116032. PubMed ID: 35483669 [TBL] [Abstract][Full Text] [Related]
39. Development and Validation of a Computational Model for Androgen Receptor Activity. Kleinstreuer NC; Ceger P; Watt ED; Martin M; Houck K; Browne P; Thomas RS; Casey WM; Dix DJ; Allen D; Sakamuru S; Xia M; Huang R; Judson R Chem Res Toxicol; 2017 Apr; 30(4):946-964. PubMed ID: 27933809 [TBL] [Abstract][Full Text] [Related]
40. Modeling luminal breast cancer heterogeneity: combination therapy to suppress a hormone receptor-negative, cytokeratin 5-positive subpopulation in luminal disease. Knox AJ; Scaling AL; Pinto MP; Bliesner BS; Haughian JM; Abdel-Hafiz HA; Horwitz KB Breast Cancer Res; 2014 Aug; 16(4):418. PubMed ID: 25116921 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]