These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35697498)

  • 1. Automatic segmentation of multitype retinal fluid from optical coherence tomography images using semisupervised deep learning network.
    Li F; Pan W; Xiang W; Zou H
    Br J Ophthalmol; 2023 Sep; 107(9):1350-1355. PubMed ID: 35697498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.
    Hassan B; Qin S; Ahmed R; Hassan T; Taguri AH; Hashmi S; Werghi N
    Comput Biol Med; 2021 Sep; 136():104727. PubMed ID: 34385089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
    Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R
    Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration.
    Lee H; Kang KE; Chung H; Kim HC
    Am J Ophthalmol; 2018 Jul; 191():64-75. PubMed ID: 29655643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms.
    Terry L; Trikha S; Bhatia KK; Graham MS; Wood A
    Transl Vis Sci Technol; 2021 Jan; 10(1):27. PubMed ID: 34008019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration.
    Ricardi F; Oakley J; Russakoff D; Boscia G; Caselgrandi P; Gelormini F; Ghilardi A; Pintore G; Tibaldi T; Marolo P; Bandello F; Reibaldi M; Borrelli E
    Br J Ophthalmol; 2024 Sep; 108(10):1436-1442. PubMed ID: 38485214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning Based Sub-Retinal Fluid Segmentation in Central Serous Chorioretinopathy Optical Coherence Tomography Scans.
    Narendra Rao TJ; Girish GN; Kothari AR; Rajan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():978-981. PubMed ID: 31946057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of deep learning to quantify fluid volume of neovascular age-related macular degeneration patients based on swept-source OCT imaging: The ONTARIO study.
    Sodhi SK; Pereira A; Oakley JD; Golding J; Trimboli C; Russakoff DB; Choudhry N
    PLoS One; 2022; 17(2):e0262111. PubMed ID: 35157713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training Deep Learning Models to Work on Multiple Devices by Cross-Domain Learning with No Additional Annotations.
    Wu Y; Olvera-Barrios A; Yanagihara R; Kung TH; Lu R; Leung I; Mishra AV; Nussinovitch H; Grimaldi G; Blazes M; Lee CS; Egan C; Tufail A; Lee AY
    Ophthalmology; 2023 Feb; 130(2):213-222. PubMed ID: 36154868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
    Alsaih K; Yusoff MZ; Tang TB; Faye I; Mériaudeau F
    Comput Methods Programs Biomed; 2020 Oct; 195():105566. PubMed ID: 32504911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-based monitoring of retinal fluid in disease activity and under therapy.
    Schmidt-Erfurth U; Reiter GS; Riedl S; Seeböck P; Vogl WD; Blodi BA; Domalpally A; Fawzi A; Jia Y; Sarraf D; Bogunović H
    Prog Retin Eye Res; 2022 Jan; 86():100972. PubMed ID: 34166808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of optical coherence tomography in verifying the specificity of ultrasonography in detecting subtle subretinal fluid associated with small choroidal melanocytic tumors.
    Krema H; Habal S; Gonzalez JE; Pavlin CJ
    Retina; 2014 Feb; 34(2):360-5. PubMed ID: 23807190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.