BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35697498)

  • 1. Automatic segmentation of multitype retinal fluid from optical coherence tomography images using semisupervised deep learning network.
    Li F; Pan W; Xiang W; Zou H
    Br J Ophthalmol; 2023 Sep; 107(9):1350-1355. PubMed ID: 35697498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy.
    Hassan B; Qin S; Ahmed R; Hassan T; Taguri AH; Hashmi S; Werghi N
    Comput Biol Med; 2021 Sep; 136():104727. PubMed ID: 34385089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images.
    Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J
    Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning.
    Moraes G; Fu DJ; Wilson M; Khalid H; Wagner SK; Korot E; Ferraz D; Faes L; Kelly CJ; Spitz T; Patel PJ; Balaskas K; Keenan TDL; Keane PA; Chopra R
    Ophthalmology; 2021 May; 128(5):693-705. PubMed ID: 32980396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Segmentation of Lesions Including Subretinal Hyperreflective Material in Neovascular Age-related Macular Degeneration.
    Lee H; Kang KE; Chung H; Kim HC
    Am J Ophthalmol; 2018 Jul; 191():64-75. PubMed ID: 29655643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning.
    Schlegl T; Waldstein SM; Bogunovic H; Endstraßer F; Sadeghipour A; Philip AM; Podkowinski D; Gerendas BS; Langs G; Schmidt-Erfurth U
    Ophthalmology; 2018 Apr; 125(4):549-558. PubMed ID: 29224926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Automated Multiclass Fluid Segmentation in Optical Coherence Tomography Images Using the Pegasus Fluid Segmentation Algorithms.
    Terry L; Trikha S; Bhatia KK; Graham MS; Wood A
    Transl Vis Sci Technol; 2021 Jan; 10(1):27. PubMed ID: 34008019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning Based Sub-Retinal Fluid Segmentation in Central Serous Chorioretinopathy Optical Coherence Tomography Scans.
    Narendra Rao TJ; Girish GN; Kothari AR; Rajan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():978-981. PubMed ID: 31946057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of paracentral acute middle maculopathy lesions in spectral-domain optical coherence tomography images through weakly supervised deep convolutional networks.
    Zhang T; Wei Q; Li Z; Meng W; Zhang M; Zhang Z
    Comput Methods Programs Biomed; 2023 Oct; 240():107632. PubMed ID: 37329802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Training Deep Learning Models to Work on Multiple Devices by Cross-Domain Learning with No Additional Annotations.
    Wu Y; Olvera-Barrios A; Yanagihara R; Kung TH; Lu R; Leung I; Mishra AV; Nussinovitch H; Grimaldi G; Blazes M; Lee CS; Egan C; Tufail A; Lee AY
    Ophthalmology; 2023 Feb; 130(2):213-222. PubMed ID: 36154868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of deep learning to quantify fluid volume of neovascular age-related macular degeneration patients based on swept-source OCT imaging: The ONTARIO study.
    Sodhi SK; Pereira A; Oakley JD; Golding J; Trimboli C; Russakoff DB; Choudhry N
    PLoS One; 2022; 17(2):e0262111. PubMed ID: 35157713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning architectures analysis for age-related macular degeneration segmentation on optical coherence tomography scans.
    Alsaih K; Yusoff MZ; Tang TB; Faye I; Mériaudeau F
    Comput Methods Programs Biomed; 2020 Oct; 195():105566. PubMed ID: 32504911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation and Clinical Applicability of Whole-Volume Automated Segmentation of Optical Coherence Tomography in Retinal Disease Using Deep Learning.
    Wilson M; Chopra R; Wilson MZ; Cooper C; MacWilliams P; Liu Y; Wulczyn E; Florea D; Hughes CO; Karthikesalingam A; Khalid H; Vermeirsch S; Nicholson L; Keane PA; Balaskas K; Kelly CJ
    JAMA Ophthalmol; 2021 Sep; 139(9):964-973. PubMed ID: 34236406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
    Guo Y; Hormel TT; Xiong H; Wang J; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2020 Oct; 9(2):54. PubMed ID: 33110708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI-based monitoring of retinal fluid in disease activity and under therapy.
    Schmidt-Erfurth U; Reiter GS; Riedl S; Seeböck P; Vogl WD; Blodi BA; Domalpally A; Fawzi A; Jia Y; Sarraf D; Bogunović H
    Prog Retin Eye Res; 2022 Jan; 86():100972. PubMed ID: 34166808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of optical coherence tomography in verifying the specificity of ultrasonography in detecting subtle subretinal fluid associated with small choroidal melanocytic tumors.
    Krema H; Habal S; Gonzalez JE; Pavlin CJ
    Retina; 2014 Feb; 34(2):360-5. PubMed ID: 23807190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of an Artificial Intelligence-Based Detector of Sub- and Intraretinal Fluid on a Large Set of Optical Coherence Tomography Volumes in Age-Related Macular Degeneration and Diabetic Macular Edema.
    Habra O; Gallardo M; Meyer Zu Westram T; De Zanet S; Jaggi D; Zinkernagel M; Wolf S; Sznitman R
    Ophthalmologica; 2022; 245(6):516-527. PubMed ID: 36215958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.