These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35697713)

  • 1. Machine learning molecular dynamics simulations toward exploration of high-temperature properties of nuclear fuel materials: case study of thorium dioxide.
    Kobayashi K; Okumura M; Nakamura H; Itakura M; Machida M; Cooper MWD
    Sci Rep; 2022 Jun; 12(1):9808. PubMed ID: 35697713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actinide Molten Salts: A Machine-Learning Potential Molecular Dynamics Study.
    Nguyen MT; Rousseau R; Paviet PD; Glezakou VA
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53398-53408. PubMed ID: 34494435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning the Quantum Centroid Force Correction in Molecular Systems: A Localized Approach.
    Wu C; Li R; Yu K
    Front Mol Biosci; 2022; 9():851311. PubMed ID: 35664679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator.
    Choi YJ; Jhi SH
    J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic models to investigate thorium dioxide (ThO2).
    Behera RK; Deo CS
    J Phys Condens Matter; 2012 May; 24(21):215405. PubMed ID: 22575874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials.
    Rodriguez A; Lam S; Hu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles-Based Machine-Learning Molecular Dynamics for Crystalline Polymers with van der Waals Interactions.
    Hong SJ; Chun H; Lee J; Kim BH; Seo MH; Kang J; Han B
    J Phys Chem Lett; 2021 Jul; 12(25):6000-6006. PubMed ID: 34165310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations.
    Richings GW; Habershon S
    Acc Chem Res; 2022 Jan; 55(2):209-220. PubMed ID: 34982533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of a liquid-liquid phase transition in H[Formula: see text]O and D[Formula: see text]O from path-integral molecular dynamics simulations.
    Eltareb A; Lopez GE; Giovambattista N
    Sci Rep; 2022 Apr; 12(1):6004. PubMed ID: 35397618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in First-Principles Based Molecular Dynamics.
    Mouvet F; Villard J; Bolnykh V; Rothlisberger U
    Acc Chem Res; 2022 Feb; 55(3):221-230. PubMed ID: 35026115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning molecular dynamics for the simulation of infrared spectra.
    Gastegger M; Behler J; Marquetand P
    Chem Sci; 2017 Oct; 8(10):6924-6935. PubMed ID: 29147518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules.
    Patrizi B; Cozza C; Pietropaolo A; Foggi P; Siciliani de Cumis M
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31968694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the exploration of the melting behavior of metallic compounds and solid solutions
    Rincent C; Castillo-Sánchez JR; Gheribi AE; Harvey JP
    Phys Chem Chem Phys; 2023 Apr; 25(15):10866-10884. PubMed ID: 37013718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Navigating Transition-Metal Chemical Space: Artificial Intelligence for First-Principles Design.
    Janet JP; Duan C; Nandy A; Liu F; Kulik HJ
    Acc Chem Res; 2021 Feb; 54(3):532-545. PubMed ID: 33480674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Strontium incorporation to Mg-Zn-Ca biodegradable bulk metallic glass investigated by molecular dynamics simulation and density functional theory calculation.
    Sun SJ; Ju SP; Yang CC; Chang KC; Lee IJ
    Sci Rep; 2020 Feb; 10(1):2515. PubMed ID: 32054867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the dynamic behavior of the mechanical properties of platinum with machine learning.
    Chapman J; Ramprasad R
    J Chem Phys; 2020 Jun; 152(22):224709. PubMed ID: 32534526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of electronic structure in the L-edge spectroscopy of actinide materials: UO
    Ramanantoanina H; Kuri G; Martin M; Bertsch J
    Phys Chem Chem Phys; 2019 Apr; 21(15):7789-7801. PubMed ID: 30932120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.