These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35697745)
1. Deep learning based analysis of microstructured materials for thermal radiation control. Sullivan J; Mirhashemi A; Lee J Sci Rep; 2022 Jun; 12(1):9785. PubMed ID: 35697745 [TBL] [Abstract][Full Text] [Related]
2. Deep learning-based inverse design of microstructured materials for optical optimization and thermal radiation control. Sullivan J; Mirhashemi A; Lee J Sci Rep; 2023 May; 13(1):7382. PubMed ID: 37149649 [TBL] [Abstract][Full Text] [Related]
3. Neural Schrödinger Equation: Physical Law as Deep Neural Network. Nakajima M; Tanaka K; Hashimoto T IEEE Trans Neural Netw Learn Syst; 2022 Jun; 33(6):2686-2700. PubMed ID: 34731081 [TBL] [Abstract][Full Text] [Related]
4. Thermal wavelength stabilization of Bragg gratings photowritten in hole-filled microstructured optical fibers. Mothe N; Pagnoux D; Huy MC; Dewinter V; Laffont G; Ferdinand P Opt Express; 2008 Nov; 16(23):19018-33. PubMed ID: 19581994 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired Microstructured Materials for Optical and Thermal Regulation. Dou S; Xu H; Zhao J; Zhang K; Li N; Lin Y; Pan L; Li Y Adv Mater; 2021 Feb; 33(6):e2000697. PubMed ID: 32686250 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-driven forward and inverse design of nanophotonic nanohole arrays: streamlining design for tailored optical functionalities and enhancing accessibility. Jahan T; Dash T; Arman SE; Inum R; Islam S; Jamal L; Yanik AA; Habib A Nanoscale; 2024 Sep; 16(35):16641-16651. PubMed ID: 39171500 [TBL] [Abstract][Full Text] [Related]
7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction. Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253 [TBL] [Abstract][Full Text] [Related]
8. Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering. McCoy DE; Shneidman AV; Davis AL; Aizenberg J Micron; 2021 Dec; 151():103160. PubMed ID: 34678583 [TBL] [Abstract][Full Text] [Related]
9. Artificial Neural Network-Based Prediction of the Optical Properties of Spherical Core-Shell Plasmonic Metastructures. Vahidzadeh E; Shankar K Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33806266 [TBL] [Abstract][Full Text] [Related]
10. Yeast cell segmentation in microstructured environments with deep learning. Prangemeier T; Wildner C; Françani AO; Reich C; Koeppl H Biosystems; 2022 Jan; 211():104557. PubMed ID: 34634444 [TBL] [Abstract][Full Text] [Related]
11. Predicting stress, strain and deformation fields in materials and structures with graph neural networks. Maurizi M; Gao C; Berto F Sci Rep; 2022 Dec; 12(1):21834. PubMed ID: 36528676 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing Chromatic-Dispersion Relations and Predicting Refractive Indices Using Text Mining and Machine Learning. Zhao J; Cole JM J Chem Inf Model; 2022 Jun; 62(11):2670-2684. PubMed ID: 35587269 [TBL] [Abstract][Full Text] [Related]
13. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks. Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288 [TBL] [Abstract][Full Text] [Related]
14. 2D Temperature Field Reconstruction Using Optical Frequency Domain Reflectometry and Machine-Learning Algorithms. Wolf A; Shabalov N; Kamynin V; Kokhanovskiy A Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298159 [TBL] [Abstract][Full Text] [Related]
15. Inverse design of core-shell particles with discrete material classes using neural networks. Kuhn L; Repän T; Rockstuhl C Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865 [TBL] [Abstract][Full Text] [Related]
16. Mechanism-based organization of neural networks to emulate systems biology and pharmacology models. Mann J; Meshkin H; Zirkle J; Han X; Thrasher B; Chaturbedi A; Arabidarrehdor G; Li Z Sci Rep; 2024 May; 14(1):12082. PubMed ID: 38802422 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. Currie G; Hawk KE; Rohren E; Vial A; Klein R J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480 [TBL] [Abstract][Full Text] [Related]
18. Deep-learning-based direct inversion for material decomposition. Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942 [TBL] [Abstract][Full Text] [Related]
19. Multiparameter optimisation of a magneto-optical trap using deep learning. Tranter AD; Slatyer HJ; Hush MR; Leung AC; Everett JL; Paul KV; Vernaz-Gris P; Lam PK; Buchler BC; Campbell GT Nat Commun; 2018 Oct; 9(1):4360. PubMed ID: 30341301 [TBL] [Abstract][Full Text] [Related]
20. Application of deep learning methods in biological networks. Jin S; Zeng X; Xia F; Huang W; Liu X Brief Bioinform; 2021 Mar; 22(2):1902-1917. PubMed ID: 32363401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]