BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 35697805)

  • 1. Deep tissue multi-photon imaging using adaptive optics with direct focus sensing and shaping.
    Qin Z; She Z; Chen C; Wu W; Lau JKY; Ip NY; Qu JY
    Nat Biotechnol; 2022 Nov; 40(11):1663-1671. PubMed ID: 35697805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.
    Yao P; Liu R; Broggini T; Thunemann M; Kleinfeld D
    Nat Protoc; 2023 Dec; 18(12):3732-3766. PubMed ID: 37914781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue.
    Wang K; Sun W; Richie CT; Harvey BK; Betzig E; Ji N
    Nat Commun; 2015 Jun; 6():7276. PubMed ID: 26073070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex.
    Ji N; Sato TR; Betzig E
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):22-7. PubMed ID: 22190489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guide to the construction and use of an adaptive optics two-photon microscope with direct wavefront sensing.
    Yao P; Liu R; Broginni T; Thunemann M; Kleinfeld D
    bioRxiv; 2023 Jan; ():. PubMed ID: 36747816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution in vivo imaging of mouse brain through the intact skull.
    Park JH; Sun W; Cui M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9236-41. PubMed ID: 26170286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging.
    Cua M; Wahl DJ; Zhao Y; Lee S; Bonora S; Zawadzki RJ; Jian Y; Sarunic MV
    Sci Rep; 2016 Sep; 6():32223. PubMed ID: 27599635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
    Qin Z; He S; Yang C; Yung JS; Chen C; Leung CK; Liu K; Qu JY
    Light Sci Appl; 2020; 9():79. PubMed ID: 32411364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue.
    Chaigneau E; Wright AJ; Poland SP; Girkin JM; Silver RA
    Opt Express; 2011 Nov; 19(23):22755-74. PubMed ID: 22109156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved deep two-photon calcium imaging in vivo.
    Birkner A; Tischbirek CH; Konnerth A
    Cell Calcium; 2017 Jun; 64():29-35. PubMed ID: 28027798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Aberration Correction with Adaptive Coefficient SPGD Algorithm for Laser Scanning Confocal Microscope.
    Zhou K; Wu Z; Zhang T; Li F; Iqbal A; Sivanandam S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional focusing through scattering media using conjugate adaptive optics with remote focusing (CAORF).
    Tao X; Lam T; Zhu B; Li Q; Reinig MR; Kubby J
    Opt Express; 2017 May; 25(9):10368-10383. PubMed ID: 28468409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of wavefront errors in mouse cranial bone using second-harmonic generation.
    Tehrani KF; Kner P; Mortensen LJ
    J Biomed Opt; 2017 Mar; 22(3):36012. PubMed ID: 28323304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive optics module for deep tissue multiphoton imaging in vivo.
    Rodríguez C; Chen A; Rivera JA; Mohr MA; Liang Y; Natan RG; Sun W; Milkie DE; Bifano TG; Chen X; Ji N
    Nat Methods; 2021 Oct; 18(10):1259-1264. PubMed ID: 34608309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull.
    Yoon S; Lee H; Hong JH; Lim YS; Choi W
    Nat Commun; 2020 Nov; 11(1):5721. PubMed ID: 33184297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal microvascular and neuronal pathologies probed in vivo by adaptive optical two-photon fluorescence microscopy.
    Zhang Q; Yang Y; Cao KJ; Chen W; Paidi S; Xia CH; Kramer RH; Gong X; Ji N
    Elife; 2023 Apr; 12():. PubMed ID: 37039777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive optical microscopy for neurobiology.
    Rodríguez C; Ji N
    Curr Opin Neurobiol; 2018 Jun; 50():83-91. PubMed ID: 29427808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.
    Streich L; Boffi JC; Wang L; Alhalaseh K; Barbieri M; Rehm R; Deivasigamani S; Gross CT; Agarwal A; Prevedel R
    Nat Methods; 2021 Oct; 18(10):1253-1258. PubMed ID: 34594033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.