These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35697920)

  • 21. Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity.
    Wang Q; Ouyang Z; Sun Y; Lin M; Liu Q
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31052439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-Sensitive Absorption-Based Gas Detecting Using Graphene-Covered Periodic Photonic Crystal Slabs Resonating Under Critical Coupling Condition at Mid-Infrared Frequencies.
    Ghods MM; Afsahi M
    IEEE Trans Nanobioscience; 2023 Jan; 22(1):143-148. PubMed ID: 35503818
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-reference plasmonic sensors based on double Fano resonances.
    Wang Y; Sun C; Li H; Gong Q; Chen J
    Nanoscale; 2017 Aug; 9(31):11085-11092. PubMed ID: 28741643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Narrow Band Solid-Liquid Composite Arrangements: Alternative Solutions for Phononic Crystal-Based Liquid Sensors.
    Mukhin N; Kutia M; Oseev A; Steinmann U; Palis S; Lucklum R
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Sensitivity of Binary/Ternary Locally Resonant Porous Phononic Crystal Sensors for Sulfuric Acid Detection: A New Class of Fluidic-Based Biosensors.
    Aliqab K; Elsayed HA; Alsharari M; Armghan A; Ahmed AM; Mehaney A
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons.
    Pan M; Liang Z; Wang Y; Chen Y
    Sci Rep; 2016 Jul; 6():29984. PubMed ID: 27439964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fano resonance in double waveguides with graphene for ultrasensitive biosensor.
    Ruan B; You Q; Zhu J; Wu L; Guo J; Dai X; Xiang Y
    Opt Express; 2018 Jun; 26(13):16884-16892. PubMed ID: 30119507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance phononic crystal sensing structure for acetone solution concentration sensing.
    Fang TY; Sun XW; Wen XD; Li YX; Liu XX; Song T; Song YZ; Liu ZJ
    Sci Rep; 2023 Apr; 13(1):7057. PubMed ID: 37120441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fano Resonance-Based Blood Plasma Monitoring and Sensing using Plasmonic Nanomatryoshka.
    Pathania P; Shishodia MS
    Plasmonics; 2021; 16(6):2117-2124. PubMed ID: 34131417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly Sensitive THz Gas-Sensor Based on the Guided Bloch Surface Wave Resonance in Polymeric Photonic Crystals.
    Zhang C; Shen S; Wang Q; Lin M; Ouyang Z; Liu Q
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmonic Spectral Splitting in Ring/Rod Metasurface.
    Muhammad N; Khan AD; Deng ZL; Khan K; Yadav A; Liu Q; Ouyang Z
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluxes of CO
    Sá MMF; Schaefer CEGR; Loureiro DC; Simas FNB; Alves BJR; de Sá Mendonça E; de Figueiredo EB; La Scala N; Panosso AR
    Sci Total Environ; 2019 Apr; 659():401-409. PubMed ID: 31096371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing the post-monsoon CO
    Raturi A; Singh H; Kumar P; Chanda A; Shukla N
    Environ Monit Assess; 2022 Jan; 194(2):50. PubMed ID: 34984556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theoretical optimisation of a novel gas sensor using periodically closed resonators.
    Zaky ZA; Al-Dossari M; Sharma A; Hendy AS; Aly AH
    Sci Rep; 2024 Jan; 14(1):2462. PubMed ID: 38291144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.
    Oseev A; Lucklum R; Zubtsov M; Schmidt MP; Mukhin NV; Hirsch S
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28946609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic continualization of mechanical metamaterials with quasi-periodic microstructure.
    Del Toro R; De Bellis ML; Bacigalupo A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230353. PubMed ID: 39069756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor.
    Wang M; Zhang M; Wang Y; Zhao R; Yan S
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of Transient Time Response as a Measure to Characterize Phononic Crystal Sensors.
    Villa-Arango S; Betancur D; Torres R; Kyriacou P
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning Multiple Fano Resonances for On-Chip Sensors in a Plasmonic System.
    Yu S; Zhao T; Yu J; Pan D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.