These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35698176)

  • 1. Amplification of LTRs of extrachromosomal linear DNAs (ALE-seq) identifies two active Oryco LTR retrotransposons in the rice cultivar Dongjin.
    Koo H; Kim S; Park HS; Lee SJ; Paek NC; Cho J; Yang TJ
    Mob DNA; 2022 Jun; 13(1):18. PubMed ID: 35698176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive detection of pre-integration intermediates of long terminal repeat retrotransposons in crop plants.
    Cho J; Benoit M; Catoni M; Drost HG; Brestovitsky A; Oosterbeek M; Paszkowski J
    Nat Plants; 2019 Jan; 5(1):26-33. PubMed ID: 30531940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Profiling of Extrachromosomal Linear DNAs of Long Terminal Repeat Retrotransposons by ALE-seq.
    Wang L; Kim EY; Cho J
    Methods Mol Biol; 2021; 2250():103-110. PubMed ID: 33900596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatics Analysis Guides to LTR Retrotransposon-Derived Extrachromosomal Linear DNAs Identified by ALE-seq.
    Wang L; Cho J; Satheesh V
    Methods Mol Biol; 2021; 2250():111-114. PubMed ID: 33900597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures.
    Kwolek K; Kędzierska P; Hankiewicz M; Mirouze M; Panaud O; Grzebelus D; Macko-Podgórni A
    Plant J; 2022 Jun; 110(6):1811-1828. PubMed ID: 35426957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic Landscape of Long Terminal Repeat Retrotransposons (LTR-RTs) and Solo LTRs as Shaped by Ectopic Recombination in Chicken and Zebra Finch.
    Ji Y; DeWoody JA
    J Mol Evol; 2016 Jun; 82(6):251-63. PubMed ID: 27154235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato.
    Yin H; Liu J; Xu Y; Liu X; Zhang S; Ma J; Du J
    PLoS One; 2013; 8(7):e68587. PubMed ID: 23861922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).
    Vonholdt BM; Takuno S; Gaut BS
    Mol Biol Evol; 2012 Oct; 29(10):3193-203. PubMed ID: 22593226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High nucleotide similarity of three
    Orozco-Arias S; Dupeyron M; Gutiérrez-Duque D; Tabares-Soto R; Guyot R
    Genome; 2023 Mar; 66(3):51-61. PubMed ID: 36623262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species.
    Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ
    BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LTR_retriever: A Highly Accurate and Sensitive Program for Identification of Long Terminal Repeat Retrotransposons.
    Ou S; Jiang N
    Plant Physiol; 2018 Feb; 176(2):1410-1422. PubMed ID: 29233850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome.
    Ragupathy R; Banks T; Cloutier S
    Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
    Tian Z; Rizzon C; Du J; Zhu L; Bennetzen JL; Jackson SA; Gaut BS; Ma J
    Genome Res; 2009 Dec; 19(12):2221-30. PubMed ID: 19789376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific suppression of long terminal repeat retrotransposon mobilization in plants.
    Brestovitsky A; Iwasaki M; Cho J; Adulyanukosol N; Paszkowski J; Catoni M
    Plant Physiol; 2023 Apr; 191(4):2245-2255. PubMed ID: 36583226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long terminal repeat retrotransposons of Oryza sativa.
    McCarthy EM; Liu J; Lizhi G; McDonald JF
    Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.
    El Baidouri M; Panaud O
    Genome Biol Evol; 2013; 5(5):954-65. PubMed ID: 23426643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.).
    Rey-Baños R; Sáenz de Miera LE; García P; Pérez de la Vega M
    PLoS One; 2017; 12(4):e0176728. PubMed ID: 28448614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species.
    Liu HN; Pei MS; Ampomah-Dwamena C; He GQ; Wei TL; Shi QF; Yu YH; Guo DL
    Funct Integr Genomics; 2023 Jul; 23(3):218. PubMed ID: 37393305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.