These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35698321)

  • 21. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Apr; 97():190-200. PubMed ID: 28082223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterizing lignin-containing microfibrillated cellulose based on water interactions, fibril properties, and imaging.
    Zhang X; Kitin P; Agarwal UP; Gleisner R; Zhu JY
    Carbohydr Polym; 2023 Sep; 316():120996. PubMed ID: 37321718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of NIR spectroscopy for predicting cellulose nanofibril quality in commercial bleached Kraft pulp of Eucalyptus.
    Costa LR; de Amorim Dos Santos A; Dias MC; Silva LE; Wood DF; Williams TG; Hein PRG; Tonoli GHD
    Carbohydr Polym; 2024 Apr; 329():121802. PubMed ID: 38286526
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Effect of Cellulose Nanofibres on Dewatering during Wet-Forming and the Mechanical Properties of Thermoformed Specimens Made of Thermomechanical and Kraft Pulps.
    Jacobsen EU; Følkner SP; Blindheim J; Molteberg D; Steinert M; Chinga-Carrasco G
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylanase treatment of eucalypt kraft pulps: effect of carryover.
    Matos JMS; Evtuguin DV; de Sousa APM; Carvalho MGVS
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):210. PubMed ID: 38355912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Fast Dissolution Pretreatment to Produce Strong Regenerated Cellulose Nanofibers via Mechanical Disintegration.
    Sirviö JA; Lakovaara M
    Biomacromolecules; 2021 Aug; 22(8):3366-3376. PubMed ID: 34232615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of pulp from Salix viminalis energy crops using the FIRSST process.
    Lavoie JM; Capek-Menard E; Gauvin H; Chornet E
    Bioresour Technol; 2010 Jul; 101(13):4940-6. PubMed ID: 19793644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of municipal solid waste paper as raw material for production of cellulose nanofibres.
    Hietala M; Varrio K; Berglund L; Soini J; Oksman K
    Waste Manag; 2018 Oct; 80():319-326. PubMed ID: 30455013
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparative study of the effect of refining on organosolv pulp from olive trimmings and kraft pulp from eucalyptus wood.
    Mutjé P; Pèlach MA; Vilaseca F; García JC; Jiménez L
    Bioresour Technol; 2005 Jul; 96(10):1125-9. PubMed ID: 15683902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copaiba oil and vegetal tannin as functionalizing agents for açai nanofibril films: valorization of forest wastes from Amazonia.
    Scatolino MV; Bufalino L; Dias MC; Mendes LM; da Silva MS; Tonoli GHD; de Souza TM; Junior FTA
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66422-66437. PubMed ID: 35501446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antifungal Activities of Wood and Non-Wood Kraft Handsheets Treated with
    Salem MZM; Alotaibi SS; Elgat WAAA; Taha AS; Fares YGD; El-Shehawi AM; Ghareeb RY
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34203016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties.
    Tonoli GH; Teixeira EM; Corrêa AC; Marconcini JM; Caixeta LA; Pereira-da-Silva MA; Mattoso LH
    Carbohydr Polym; 2012 Jun; 89(1):80-8. PubMed ID: 24750607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in accessibility of cellulose during kraft pulping of wood in deuterium oxide.
    Pönni R; Galvis L; Vuorinen T
    Carbohydr Polym; 2014 Jan; 101():792-7. PubMed ID: 24299840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production.
    Abrantes S; Amaral ME; Costa AP; Duarte AP
    Bioresour Technol; 2007 Nov; 98(15):2873-8. PubMed ID: 17398089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of cellulose pulp in aqueous NMMO solution under the process conditions of lyocell slurry.
    Sayyed AJ; Mohite LV; Deshmukh NA; Pinjari DV
    Carbohydr Polym; 2019 Feb; 206():220-228. PubMed ID: 30553316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp.
    Yang W; Feng Y; He H; Yang Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 29986494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alkaline pulping of some eucalypts from Sudan.
    Khristova P; Kordsachia O; Patt R; Dafaalla S
    Bioresour Technol; 2006 Mar; 97(4):535-44. PubMed ID: 15935655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass balance and elimination mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during the kraft pulping process.
    Xia K; Cao R; Gao Y; Li Y; Ni Y; Wang S; Geng N; Song B; Ren Y; Zhang Y; Chen J; Zhang H
    J Hazard Mater; 2020 Nov; 398():122819. PubMed ID: 32506046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphological and rheological properties of cellulose nanofibrils prepared by post-fibrillation endoglucanase treatment.
    Wang X; Zeng J; Zhu JY
    Carbohydr Polym; 2022 Nov; 295():119885. PubMed ID: 35989020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.