These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35698339)
1. Nacre-mimetic hydroxyapatite/chitosan/gelatin layered scaffolds modifying substance P for subchondral bone regeneration. Chen D; Liu P; Li M; Zhang C; Gao Y; Guo Y Carbohydr Polym; 2022 Sep; 291():119575. PubMed ID: 35698339 [TBL] [Abstract][Full Text] [Related]
2. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. Liu XL; Zhang CJ; Shi JJ; Ke QF; Ge YW; Zhu ZA; Guo YP J Nanobiotechnology; 2023 Aug; 21(1):259. PubMed ID: 37550715 [TBL] [Abstract][Full Text] [Related]
3. Chitosan/gelatin scaffolds support bone regeneration. Georgopoulou A; Papadogiannis F; Batsali A; Marakis J; Alpantaki K; Eliopoulos AG; Pontikoglou C; Chatzinikolaidou M J Mater Sci Mater Med; 2018 May; 29(5):59. PubMed ID: 29730855 [TBL] [Abstract][Full Text] [Related]
4. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Abdian N; Soltani Zangbar H; Etminanfar M; Hamishehkar H Int J Biol Macromol; 2024 Oct; 278(Pt 4):135014. PubMed ID: 39181354 [TBL] [Abstract][Full Text] [Related]
5. Co-inspired hydroxyapatite-based scaffolds for vascularized bone regeneration. Feng C; Xue J; Yu X; Zhai D; Lin R; Zhang M; Xia L; Wang X; Yao Q; Chang J; Wu C Acta Biomater; 2021 Jan; 119():419-431. PubMed ID: 33181360 [TBL] [Abstract][Full Text] [Related]
6. Injectable nanohydroxyapatite-chitosan-gelatin micro-scaffolds induce regeneration of knee subchondral bone lesions. Wang B; Liu W; Xing D; Li R; Lv C; Li Y; Yan X; Ke Y; Xu Y; Du Y; Lin J Sci Rep; 2017 Dec; 7(1):16709. PubMed ID: 29196647 [TBL] [Abstract][Full Text] [Related]
7. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
8. SrFe Ge YW; Fan ZH; Ke QF; Guo YP; Zhang CQ; Jia WT Mater Today Bio; 2022 Dec; 16():100362. PubMed ID: 35937572 [TBL] [Abstract][Full Text] [Related]
9. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
10. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
11. Magnetic lanthanum-doped hydroxyapatite/chitosan scaffolds with endogenous stem cell-recruiting and immunomodulatory properties for bone regeneration. Wang Q; Tang Y; Ke Q; Yin W; Zhang C; Guo Y; Guan J J Mater Chem B; 2020 Jun; 8(24):5280-5292. PubMed ID: 32441294 [TBL] [Abstract][Full Text] [Related]
13. Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis Chen Y; Liu X; Liu R; Gong Y; Wang M; Huang Q; Feng Q; Yu B Theranostics; 2017; 7(5):1072-1087. PubMed ID: 28435449 [TBL] [Abstract][Full Text] [Related]
14. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
15. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147 [TBL] [Abstract][Full Text] [Related]
16. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
17. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
18. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. He J; Hu X; Cao J; Zhang Y; Xiao J; Peng L; Chen D; Xiong C; Zhang L Carbohydr Polym; 2021 Feb; 253():117198. PubMed ID: 33278972 [TBL] [Abstract][Full Text] [Related]
19. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. Chen YX; Zhu R; Ke QF; Gao YS; Zhang CQ; Guo YP Nanoscale; 2017 May; 9(20):6765-6776. PubMed ID: 28489093 [TBL] [Abstract][Full Text] [Related]
20. HA-g-CS Implant and Moderate-intensity Exercise Stimulate Subchondral Bone Remodeling and Promote Repair of Osteochondral Defects in Mice. Shen K; Liu X; Qin H; Chai Y; Wang L; Yu B Int J Med Sci; 2021; 18(16):3808-3820. PubMed ID: 34790057 [No Abstract] [Full Text] [Related] [Next] [New Search]