BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35698424)

  • 1. Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications.
    Soroush E; Mohammadpour Z; Kharaziha M; Bakhsheshi-Rad HR; Berto F
    Carbohydr Polym; 2022 Sep; 291():119670. PubMed ID: 35698424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanofibrils-based Hydrogels for Biomedical Applications: Progresses and Challenges.
    Liu H; Liu K; Han X; Xie H; Si C; Liu W; Bae Y
    Curr Med Chem; 2020; 27(28):4622-4646. PubMed ID: 32124687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopolymer nanofibrils: structure, modeling, preparation, and applications.
    Ling S; Chen W; Fan Y; Zheng K; Jin K; Yu H; Buehler MJ; Kaplan DL
    Prog Polym Sci; 2018 Oct; 85():1-56. PubMed ID: 31915410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose and its Composites for Biomedical Applications.
    Dumanli AG
    Curr Med Chem; 2017; 24(5):512-528. PubMed ID: 27758719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zwitterionic chitin nanocrystals mediated composite and self-assembly with cellulose nanofibrils.
    Liu L; Chen H; Zou Y; Chen F; Fan Y; Yong Q
    Int J Biol Macromol; 2022 Dec; 223(Pt A):108-119. PubMed ID: 36336160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional cellulose-based hydrogels for biomedical applications.
    Fu LH; Qi C; Ma MG; Wan P
    J Mater Chem B; 2019 Mar; 7(10):1541-1562. PubMed ID: 32254901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering nanocellulose hydrogels for biomedical applications.
    Curvello R; Raghuwanshi VS; Garnier G
    Adv Colloid Interface Sci; 2019 May; 267():47-61. PubMed ID: 30884359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications.
    Chen C; Xi Y; Weng Y
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.
    Torres-Rendon JG; Femmer T; De Laporte L; Tigges T; Rahimi K; Gremse F; Zafarnia S; Lederle W; Ifuku S; Wessling M; Hardy JG; Walther A
    Adv Mater; 2015 May; 27(19):2989-95. PubMed ID: 25833165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers.
    Abdo GG; Zagho MM; Al Moustafa AE; Khalil A; Elzatahry AA
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1893-1908. PubMed ID: 33749098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring structural properties, mechanical behavior and cellular performance of collagen hydrogel through incorporation of cellulose nanofibrils and cellulose nanocrystals: A comparative study.
    Torabizadeh F; Fadaie M; Mirzaei E; Sadeghi S; Nejabat GR
    Int J Biol Macromol; 2022 Oct; 219():438-451. PubMed ID: 35940434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications.
    Monfared M; Mawad D; Rnjak-Kovacina J; Stenzel MH
    J Mater Chem B; 2021 Aug; 9(31):6163-6175. PubMed ID: 34286810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Cellulose to Cellulose Nanofibrils-A Comprehensive Review of the Preparation and Modification of Cellulose Nanofibrils.
    Yi T; Zhao H; Mo Q; Pan D; Liu Y; Huang L; Xu H; Hu B; Song H
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33182719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin.
    Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H
    Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of animal polysaccharides nanofibers by electrospinning and their potential biomedical applications.
    Zhao W; Liu W; Li J; Lin X; Wang Y
    J Biomed Mater Res A; 2015 Feb; 103(2):807-18. PubMed ID: 24733749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose in biomedical and biosensing applications: A review.
    Subhedar A; Bhadauria S; Ahankari S; Kargarzadeh H
    Int J Biol Macromol; 2021 Jan; 166():587-600. PubMed ID: 33130267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudosolvent Intercalator of Chitin: Self-Exfoliating into Sub-1 nm Thick Nanofibrils for Multifunctional Chitinous Materials.
    Yang K; Zhou Y; Wang Z; Li M; Shi D; Wang X; Jiang T; Zhang Q; Ding B; You J
    Adv Mater; 2021 Mar; 33(10):e2007596. PubMed ID: 33538009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties and environmental sustainability of fungal chitin nanofibril reinforced cellulose acetate films and nanofiber mats by solution blow spinning.
    Kramar A; González-Benito J; Nikolić N; Larrañaga A; Lizundia E
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):132046. PubMed ID: 38723813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging chitin and chitosan nanofibrous materials for biomedical applications.
    Ding F; Deng H; Du Y; Shi X; Wang Q
    Nanoscale; 2014 Aug; 6(16):9477-93. PubMed ID: 25000536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.