BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35699216)

  • 1. Potential of pectin for biomedical applications: a comprehensive review.
    Bostancı NS; Büyüksungur S; Hasirci N; Tezcaner A
    J Biomater Sci Polym Ed; 2022 Oct; 33(14):1866-1900. PubMed ID: 35699216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.
    Lapomarda A; Cerqueni G; Geven MA; Chiesa I; De Acutis A; De Blasi M; Montemurro F; De Maria C; Mattioli-Belmonte M; Vozzi G
    Macromol Biosci; 2021 Sep; 21(9):e2100168. PubMed ID: 34173326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review.
    Sultana N
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress and treatment strategy of pectin polysaccharide based tissue engineering scaffolds in cancer therapy, wound healing and cartilage regeneration.
    Koshy J; Sangeetha D
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128594. PubMed ID: 38056744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications.
    Varaprasad K; Karthikeyan C; Yallapu MM; Sadiku R
    Int J Biol Macromol; 2022 Jul; 212():561-578. PubMed ID: 35643157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary Evaluation of 3D Printed Chitosan/Pectin Constructs for Biomedical Applications.
    Michailidou G; Terzopoulou Z; Kehagia A; Michopoulou A; Bikiaris DN
    Mar Drugs; 2021 Jan; 19(1):. PubMed ID: 33467462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application.
    Lapomarda A; De Acutis A; Chiesa I; Fortunato GM; Montemurro F; De Maria C; Mattioli Belmonte M; Gottardi R; Vozzi G
    Biomacromolecules; 2020 Feb; 21(2):319-327. PubMed ID: 31808680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
    Sahai N; Gogoi M; Tewari RP
    Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications.
    Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery.
    Long J; Etxeberria AE; Nand AV; Bunt CR; Ray S; Seyfoddin A
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109873. PubMed ID: 31500054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application.
    Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J
    Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances on biomedical applications of pectin-containing biomaterials.
    Eivazzadeh-Keihan R; Noruzi EB; Aliabadi HAM; Sheikhaleslami S; Akbarzadeh AR; Hashemi SM; Gorab MG; Maleki A; Cohan RA; Mahdavi M; Poodat R; Keyvanlou F; Esmaeili MS
    Int J Biol Macromol; 2022 Sep; 217():1-18. PubMed ID: 35809676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive Three-Dimensional
    Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer cartilage mimetic composites.
    Schipani R; Scheurer S; Florentin R; Critchley SE; Kelly DJ
    Biofabrication; 2020 May; 12(3):035011. PubMed ID: 32252045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.