These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 35699319)

  • 41. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies.
    Zhou Y; Lee JJ; Yuan Y
    Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Bayesian Hybrid Adaptive Randomisation Design for Clinical Trials with Survival Outcomes.
    Moatti M; Chevret S; Zohar S; Rosenberger WF
    Methods Inf Med; 2016; 55(1):4-13. PubMed ID: 26404511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A nonparametric Bayesian method for dose finding in drug combinations cancer trials.
    Razaee ZS; Cook-Wiens G; Tighiouart M
    Stat Med; 2022 Mar; 41(6):1059-1080. PubMed ID: 35075652
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A practical Bayesian design to identify the maximum tolerated dose contour for drug combination trials.
    Zhang L; Yuan Y
    Stat Med; 2016 Nov; 35(27):4924-4936. PubMed ID: 27580928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving safety of the continual reassessment method via a modified allocation rule.
    Mozgunov P; Jaki T
    Stat Med; 2020 Mar; 39(7):906-922. PubMed ID: 31859399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. DICE: A Bayesian model for early dose finding in phase I trials with multiple treatment courses.
    Ursino M; Biard L; Chevret S
    Biom J; 2022 Dec; 64(8):1486-1497. PubMed ID: 34729815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of the continual reassessment method to a phase I dose-finding trial in Japanese patients: East meets West.
    Morita S
    Stat Med; 2011 Jul; 30(17):2090-7. PubMed ID: 21500239
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A default method to specify skeletons for Bayesian model averaging continual reassessment method for phase I clinical trials.
    Pan H; Yuan Y
    Stat Med; 2017 Jan; 36(2):266-279. PubMed ID: 26991076
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A comparison of model choices for the Continual Reassessment Method in phase I cancer trials.
    Paoletti X; Kramar A
    Stat Med; 2009 Oct; 28(24):3012-28. PubMed ID: 19672839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance of two-stage continual reassessment method relative to an optimal benchmark.
    Wages NA; Conaway MR; O'Quigley J
    Clin Trials; 2013; 10(6):862-75. PubMed ID: 24085776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AIDE: Adaptive intrapatient dose escalation designs to accelerate Phase I clinical trials.
    Zhou Y; Zhao Y; Cicconetti G; Mu Y; Yuan Y; Wang L; Penugonda S; Salman Z
    Pharm Stat; 2023 Mar; 22(2):300-311. PubMed ID: 36333972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal dose escalation methods using deep reinforcement learning in phase I oncology trials.
    Matsuura K; Sakamaki K; Honda J; Sozu T
    J Biopharm Stat; 2023 Sep; 33(5):639-652. PubMed ID: 36717962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surv-CRM-12: A Bayesian phase I/II survival CRM for right-censored toxicity endpoints with competing disease progression.
    Andrillon A; Chevret S; Lee SM; Biard L
    Stat Med; 2022 Dec; 41(29):5753-5766. PubMed ID: 36259523
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive dose finding for phase I clinical trials of drugs used for chemotherapy of cancer.
    Potter DM
    Stat Med; 2002 Jul; 21(13):1805-23. PubMed ID: 12111891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A simulation-free approach to assessing the performance of the continual reassessment method.
    Braun TM
    Stat Med; 2020 Dec; 39(30):4651-4666. PubMed ID: 32939800
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of Bayesian and frequentist group-sequential clinical trial designs.
    Stallard N; Todd S; Ryan EG; Gates S
    BMC Med Res Methodol; 2020 Jan; 20(1):4. PubMed ID: 31910813
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bayesian optimization design for finding a maximum tolerated dose combination in phase I clinical trials.
    Takahashi A; Suzuki T
    Int J Biostat; 2021 Apr; 18(1):39-56. PubMed ID: 33818029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection of the initial design for the two-stage continual reassessment method.
    Jia X; Ivanova A; Lee SM
    J Biopharm Stat; 2017; 27(3):495-506. PubMed ID: 28300466
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Approximate Bayesian computation design for phase I clinical trials.
    Jin H; Du W; Yin G
    Stat Methods Med Res; 2022 Dec; 31(12):2310-2322. PubMed ID: 36031856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shotgun: A Bayesian seamless phase I-II design to accelerate the development of targeted therapies and immunotherapy.
    Jiang L; Li R; Yan F; Yap TA; Yuan Y
    Contemp Clin Trials; 2021 May; 104():106338. PubMed ID: 33711459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.