These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 35699661)

  • 41. Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels.
    Cowan AJ; Durrant JR
    Chem Soc Rev; 2013 Mar; 42(6):2281-93. PubMed ID: 23023269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation and characterization of nanomaterials for sustainable energy production.
    Liu CJ; Burghaus U; Besenbacher F; Wang ZL
    ACS Nano; 2010 Oct; 4(10):5517-26. PubMed ID: 20973572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. State of the art developments and prospects of metal-organic frameworks for energy applications.
    Zeeshan M; Shahid M
    Dalton Trans; 2022 Feb; 51(5):1675-1723. PubMed ID: 34919099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sustainable hydrogen generation and storage - a review.
    Sarmah MK; Singh TP; Kalita P; Dewan A
    RSC Adv; 2023 Aug; 13(36):25253-25275. PubMed ID: 37622026
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment.
    Lu Y; Zhang H; Fan D; Chen Z; Yang X
    J Hazard Mater; 2022 Feb; 423(Pt B):127128. PubMed ID: 34534804
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production
    Saruyama M; Pelicano CM; Teranishi T
    Chem Sci; 2022 Mar; 13(10):2824-2840. PubMed ID: 35382478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Perspectives on the Development of Oxide-Based Photocathodes for Solar Fuel Production.
    Lumley MA; Radmilovic A; Jang YJ; Lindberg AE; Choi KS
    J Am Chem Soc; 2019 Nov; 141(46):18358-18369. PubMed ID: 31693356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.
    Highfield J
    Molecules; 2015 Apr; 20(4):6739-93. PubMed ID: 25884553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power.
    Segev G; Beeman JW; Greenblatt JB; Sharp ID
    Nat Mater; 2018 Dec; 17(12):1115-1121. PubMed ID: 30374204
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrocatalytic Reduction of Nitrogen and Carbon Dioxide to Chemical Fuels: Challenges and Opportunities for a Solar Fuel Device.
    Fenwick AQ; Gregoire JM; Luca OR
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):47-57. PubMed ID: 25596654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation, characterization, evaluation and mechanistic study of organic polymer nano-photocatalysts for solar fuel production.
    Pavliuk MV; Wrede S; Liu A; Brnovic A; Wang S; Axelsson M; Tian H
    Chem Soc Rev; 2022 Aug; 51(16):6909-6935. PubMed ID: 35912574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal Oxide Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges.
    Wu H; Zhang D; Lei BX; Liu ZQ
    Chempluschem; 2022 May; 87(5):e202200097. PubMed ID: 35510892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications.
    Wu WQ; Xu YF; Chen HY; Kuang DB; Su CY
    Acc Chem Res; 2019 Mar; 52(3):633-644. PubMed ID: 30668116
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All Solution-Processed, Hybrid Organic-Inorganic Photocathode for Hydrogen Evolution.
    Rojas HC; Bellani S; Sarduy EA; Fumagalli F; Mayer MT; Schreier M; Grätzel M; Di Fonzo F; Antognazza MR
    ACS Omega; 2017 Jul; 2(7):3424-3431. PubMed ID: 31457664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Unassisted Photoelectrochemical Cell with Multimediator Modulation for Solar Water Splitting Exceeding 4% Solar-to-Hydrogen Efficiency.
    Ye S; Shi W; Liu Y; Li D; Yin H; Chi H; Luo Y; Ta N; Fan F; Wang X; Li C
    J Am Chem Soc; 2021 Aug; 143(32):12499-12508. PubMed ID: 34343431
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanowire photochemical diodes for artificial photosynthesis.
    Andrei V; Roh I; Yang P
    Sci Adv; 2023 Feb; 9(6):eade9044. PubMed ID: 36763656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.
    Liu C; Tang J; Chen HM; Liu B; Yang P
    Nano Lett; 2013 Jun; 13(6):2989-92. PubMed ID: 23647159
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of the technological viability of photoelectrochemical devices for oxygen and fuel production on Moon and Mars.
    Ross B; Haussener S; Brinkert K
    Nat Commun; 2023 Jun; 14(1):3141. PubMed ID: 37280222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.