BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35699852)

  • 1. Elevational changes in productivity of saplings relate to distribution of two congeneric tree species.
    Suzuki R; Takahashi K
    J Plant Res; 2022 Sep; 135(5):647-658. PubMed ID: 35699852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition and disturbance affect elevational distribution of two congeneric conifers.
    Takahashi K; Ikeda K; Okuhara I; Kurasawa R; Kobayashi S
    Ecol Evol; 2022 Feb; 12(2):e8647. PubMed ID: 35222986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, allometry and shade tolerance of understory saplings of four subalpine conifers in central Japan.
    Takahashi K; Obata Y
    J Plant Res; 2014 Mar; 127(2):329-38. PubMed ID: 24310614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional relationships between crown morphology and within-crown characteristics of understory saplings of three codominant conifers in a subalpine forest in central Japan.
    Mori A; Takeda H
    Tree Physiol; 2004 Jun; 24(6):661-70. PubMed ID: 15059766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale canopy opening causes decreased photosynthesis in the saplings of shade-tolerant conifer, Abies veitchii.
    Mitamura M; Yamamura Y; Nakano T
    Tree Physiol; 2009 Jan; 29(1):137-45. PubMed ID: 19203939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent yet vulnerable: resurvey of an Abies ecotone reveals few differences but vulnerability to climate change.
    Nelson KN; O'Dean E; Knapp EE; Parker AJ; Bisbing SM
    Ecology; 2021 Dec; 102(12):e03525. PubMed ID: 34467519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characteristics of Abies mariesii saplings in a snowy subalpine parkland in central Japan.
    Mori A; Hasegawa SF
    Tree Physiol; 2007 Jan; 27(1):141-8. PubMed ID: 17169915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration and coexistence of two Abies species dominating subalpine forests in central Japan.
    Kohyama T
    Oecologia; 1984 May; 62(2):156-161. PubMed ID: 28310708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do interspecific differences in sapling growth traits contribute to the co-dominance of Acer saccharum and Fagus grandifolia?
    Takahashi K; Lechowicz MJ
    Ann Bot; 2008 Jan; 101(1):103-9. PubMed ID: 17942590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional correlates of leaf demographic response to gap release in saplings of a shade-tolerant tree, Elateriospermum tapos.
    Osada N; Takeda H; Kitajima K; Pearcy RW
    Oecologia; 2003 Oct; 137(2):181-7. PubMed ID: 12883987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological acclimation to understory environments in Abies amabilis, a shade- and snow-tolerant conifer species of the Cascade Mountains, Washington, USA.
    Mori AS; Mizumachi E; Sprugel DG
    Tree Physiol; 2008 May; 28(5):815-24. PubMed ID: 18316313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient.
    Grassi G; Bagnaresi U
    Tree Physiol; 2001 Aug; 21(12-13):959-67. PubMed ID: 11498343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How the timberline formed: altitudinal changes in stand structure and dynamics around the timberline in central Japan.
    Takahashi K; Hirosawa T; Morishima R
    Ann Bot; 2012 May; 109(6):1165-74. PubMed ID: 22451598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the recruitment response of juvenile Neotropical trees to logging intensity using functional traits.
    Hogan JA; Hérault B; Bachelot B; Gorel A; Jounieaux M; Baraloto C
    Ecol Appl; 2018 Dec; 28(8):1998-2010. PubMed ID: 29999560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life stage, not climate change, explains observed tree range shifts.
    Máliš F; Kopecký M; Petřík P; Vladovič J; Merganič J; Vida T
    Glob Chang Biol; 2016 May; 22(5):1904-14. PubMed ID: 26725258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate.
    Panthi S; Fan ZX; van der Sleen P; Zuidema PA
    Glob Chang Biol; 2020 Mar; 26(3):1778-1794. PubMed ID: 31696994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of experimental defoliation on native and invasive saplings: are native species more resilient to canopy disturbance?
    Hinman ED; Fridley JD
    Tree Physiol; 2020 Jun; 40(7):969-979. PubMed ID: 32268378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.
    Reinhardt K; Smith WK
    Tree Physiol; 2008 Jan; 28(1):113-22. PubMed ID: 17938120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecophysiological importance of cloud immersion in a relic spruce-fir forest at elevational limits, southern Appalachian Mountains, USA.
    Berry ZC; Smith WK
    Oecologia; 2013 Nov; 173(3):637-48. PubMed ID: 23576108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.