These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35700145)

  • 1. High Spatial Resolution Thermal Mapping of Volatile Switching in NbO
    Nandi SK; Puyoo E; Nath SK; Albertini D; Baboux N; Das SK; Ratcliff T; Elliman RG
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29025-29031. PubMed ID: 35700145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal transport in metal-NbO
    Nath SK; Nandi SK; Das SK; Liang Y; Elliman RG
    Nanoscale; 2023 Apr; 15(16):7559-7565. PubMed ID: 37038892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Conductivity of Amorphous NbO
    Nandi SK; Das SK; Cui Y; El Helou A; Nath SK; Ratcliff T; Raad P; Elliman RG
    ACS Appl Mater Interfaces; 2022 May; 14(18):21270-21277. PubMed ID: 35485924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Amplitude Spike Generator in Au Nanodot-Incorporated NbO
    Park W; Kim G; In JH; Rhee H; Song H; Park J; Martinez A; Kim KM
    Nano Lett; 2023 Jun; 23(11):5399-5407. PubMed ID: 36930534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM).
    Pereira MJ; Amaral JS; Silva NJ; Amaral VS
    Microsc Microanal; 2016 Dec; 22(6):1270-1280. PubMed ID: 27869043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale temperature sensing of electronic devices with calibrated scanning thermal microscopy.
    Swoboda T; Wainstein N; Deshmukh S; Köroğlu Ç; Gao X; Lanza M; Hilgenkamp H; Pop E; Yalon E; Muñoz Rojo M
    Nanoscale; 2023 Apr; 15(15):7139-7146. PubMed ID: 37006192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric Field- and Current-Induced Electroforming Modes in NbO
    Nandi SK; Nath SK; El-Helou AE; Li S; Ratcliff T; Uenuma M; Raad PE; Elliman RG
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8422-8428. PubMed ID: 31989818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbO
    Aziz J; Kim H; Rehman S; Khan MF; Kim DK
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized Heating and Switching in MoTe
    Datye IM; Rojo MM; Yalon E; Deshmukh S; Mleczko MJ; Pop E
    Nano Lett; 2020 Feb; 20(2):1461-1467. PubMed ID: 31951419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Mapping of Unmodulated Temperature Fields with Nanometer Resolution.
    Reihani A; Luan Y; Yan S; Lim JW; Meyhofer E; Reddy P
    ACS Nano; 2022 Jan; 16(1):939-950. PubMed ID: 34958551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Distribution in TaO
    Meng J; Goodwill JM; Strelcov E; Bao K; McClelland JJ; Skowronski M
    ACS Appl Electron Mater; 2023 Apr; 5(4):2414-2421. PubMed ID: 37124236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement.
    Hwang G; Chung J; Kwon O
    Rev Sci Instrum; 2014 Nov; 85(11):114901. PubMed ID: 25430136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pico-Watt Scanning Thermal Microscopy for Thermal Energy Transport Investigation in Atomic Materials.
    Koo S; Park J; Kim K
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.