These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35700258)

  • 1. Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface.
    Qi Y; Zhu X; Xu K; Ren F; Jiang H; Zhu J; Zhang J; Pan G; Wang Y
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3825-3835. PubMed ID: 35700258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust neural decoding by kernel regression with Siamese representation learning.
    Li Y; Qi Y; Wang Y; Wang Y; Xu K; Pan G
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34663771
    [No Abstract]   [Full Text] [Related]  

  • 3. Unscented Kalman filter for brain-machine interfaces.
    Li Z; O'Doherty JE; Hanson TL; Lebedev MA; Henriquez CS; Nicolelis MA
    PLoS One; 2009 Jul; 4(7):e6243. PubMed ID: 19603074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spike Rate Estimation Using Bayesian Adaptive Kernel Smoother (BAKS) and Its Application to Brain Machine Interfaces.
    Ahmadi N; Constandinou TG; Bouganis CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2547-2550. PubMed ID: 30440927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive decoding for brain-machine interfaces through Bayesian parameter updates.
    Li Z; O'Doherty JE; Lebedev MA; Nicolelis MA
    Neural Comput; 2011 Dec; 23(12):3162-204. PubMed ID: 21919788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear point-process estimation of neural spiking activity based on variational Bayesian inference.
    Xiao P; Liu X
    J Neural Eng; 2022 Sep; 19(4):. PubMed ID: 35947962
    [No Abstract]   [Full Text] [Related]  

  • 7. Real-time decoding of nonstationary neural activity in motor cortex.
    Wu W; Hatsopoulos NG
    IEEE Trans Neural Syst Rehabil Eng; 2008 Jun; 16(3):213-22. PubMed ID: 18586600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cluster Kernel Reinforcement Learning-based Kalman Filter for Three-Lever Discrimination Task in Brain-Machine Interface.
    Song Z; Zhang X; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():690-693. PubMed ID: 36086404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural control of finger movement via intracortical brain-machine interface.
    Irwin ZT; Schroeder KE; Vu PP; Bullard AJ; Tat DM; Nu CS; Vaskov A; Nason SR; Thompson DE; Bentley JN; Patil PG; Chestek CA
    J Neural Eng; 2017 Dec; 14(6):066004. PubMed ID: 28722685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining decoder design and neural adaptation in brain-machine interfaces.
    Shenoy KV; Carmena JM
    Neuron; 2014 Nov; 84(4):665-80. PubMed ID: 25459407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
    Vaskov AK; Irwin ZT; Nason SR; Vu PP; Nu CS; Bullard AJ; Hill M; North N; Patil PG; Chestek CA
    Front Neurosci; 2018; 12():751. PubMed ID: 30455621
    [No Abstract]   [Full Text] [Related]  

  • 14. Invasive Brain Machine Interface System.
    Jin Y; Chen J; Zhang S; Chen W; Zheng X
    Adv Exp Med Biol; 2019; 1101():67-89. PubMed ID: 31729672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement Learning-based Kalman Filter for Adaptive Brain Control in Brain-Machine Interface
    Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6619-6622. PubMed ID: 34892625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33477128
    [No Abstract]   [Full Text] [Related]  

  • 17. Decoding movement direction from cortical microelectrode recordings using an LSTM-based neural network.
    Premchand B; Toe KK; Wang C; Shaikh S; Libedinsky C; Ang KK; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3007-3010. PubMed ID: 33018638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the role of firing-rate normalization and dimensionality reduction in brain-machine interface robustness.
    Kao JC; Nuyujukian P; Stavisky S; Ryu SI; Ganguli S; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():293-8. PubMed ID: 24109682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.