These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 35700559)
1. Approximation properties of Gaussian-binary restricted Boltzmann machines and Gaussian-binary deep belief networks. Gu L; Yang L; Zhou F Neural Netw; 2022 Sep; 153():49-63. PubMed ID: 35700559 [TBL] [Abstract][Full Text] [Related]
2. Representational power of restricted boltzmann machines and deep belief networks. Le Roux N; Bengio Y Neural Comput; 2008 Jun; 20(6):1631-49. PubMed ID: 18254699 [TBL] [Abstract][Full Text] [Related]
3. Refinements of Approximation Results of Conditional Restricted Boltzmann Machines. Gu L; Yang L; Zhou F IEEE Trans Neural Netw Learn Syst; 2023 Mar; 34(3):1228-1242. PubMed ID: 34428160 [TBL] [Abstract][Full Text] [Related]
4. On the effective initialisation for restricted Boltzmann machines via duality with Hopfield model. Leonelli FE; Agliari E; Albanese L; Barra A Neural Netw; 2021 Nov; 143():314-326. PubMed ID: 34175807 [TBL] [Abstract][Full Text] [Related]
5. Temperature based Restricted Boltzmann Machines. Li G; Deng L; Xu Y; Wen C; Wang W; Pei J; Shi L Sci Rep; 2016 Jan; 6():19133. PubMed ID: 26758235 [TBL] [Abstract][Full Text] [Related]
6. Dynamical analysis of contrastive divergence learning: Restricted Boltzmann machines with Gaussian visible units. Karakida R; Okada M; Amari S Neural Netw; 2016 Jul; 79():78-87. PubMed ID: 27131468 [TBL] [Abstract][Full Text] [Related]
7. On the importance of hidden bias and hidden entropy in representational efficiency of the Gaussian-Bipolar Restricted Boltzmann Machines. Isabekov A; Erzin E Neural Netw; 2018 Sep; 105():405-418. PubMed ID: 29940489 [TBL] [Abstract][Full Text] [Related]
8. Universal approximation depth and errors of narrow belief networks with discrete units. Montúfar GF Neural Comput; 2014 Jul; 26(7):1386-407. PubMed ID: 24708370 [TBL] [Abstract][Full Text] [Related]
9. Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines. Montufar G; Ay N Neural Comput; 2011 May; 23(5):1306-19. PubMed ID: 21299421 [TBL] [Abstract][Full Text] [Related]
11. Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection. Di Gioacchino A; Procyk J; Molari M; Schreck JS; Zhou Y; Liu Y; Monasson R; Cocco S; Šulc P PLoS Comput Biol; 2022 Sep; 18(9):e1010561. PubMed ID: 36174101 [TBL] [Abstract][Full Text] [Related]
12. On the approximation by single hidden layer feedforward neural networks with fixed weights. Guliyev NJ; Ismailov VE Neural Netw; 2018 Feb; 98():296-304. PubMed ID: 29301110 [TBL] [Abstract][Full Text] [Related]
13. Where do features come from? Hinton G Cogn Sci; 2014 Aug; 38(6):1078-101. PubMed ID: 23800216 [TBL] [Abstract][Full Text] [Related]
14. Restricted Boltzmann Machines as Models of Interacting Variables. Bulso N; Roudi Y Neural Comput; 2021 Sep; 33(10):2646-2681. PubMed ID: 34280260 [TBL] [Abstract][Full Text] [Related]
15. Accelerating deep learning with memcomputing. Manukian H; Traversa FL; Di Ventra M Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316 [TBL] [Abstract][Full Text] [Related]
16. On the Representational Power of Restricted Boltzmann Machines for Symmetric Functions and Boolean Functions. Gu L; Huang J; Yang L IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1335-1347. PubMed ID: 30281484 [TBL] [Abstract][Full Text] [Related]
17. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Petersen P; Voigtlaender F Neural Netw; 2018 Dec; 108():296-330. PubMed ID: 30245431 [TBL] [Abstract][Full Text] [Related]
18. Test-retest reliability of spatial patterns from resting-state functional MRI using the restricted Boltzmann machine and hierarchically organized spatial patterns from the deep belief network. Kim HC; Jang H; Lee JH J Neurosci Methods; 2020 Jan; 330():108451. PubMed ID: 31626847 [TBL] [Abstract][Full Text] [Related]
19. Approximation of smooth functionals using deep ReLU networks. Song L; Liu Y; Fan J; Zhou DX Neural Netw; 2023 Sep; 166():424-436. PubMed ID: 37549610 [TBL] [Abstract][Full Text] [Related]
20. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks. Jang H; Plis SM; Calhoun VD; Lee JH Neuroimage; 2017 Jan; 145(Pt B):314-328. PubMed ID: 27079534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]