These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 35700685)

  • 1. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing car-following behaviors of human drivers when following automated vehicles using the real-world dataset.
    Wen X; Cui Z; Jian S
    Accid Anal Prev; 2022 Jul; 172():106689. PubMed ID: 35569279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human-like car-following model for autonomous vehicles considering the cut-in behavior of other vehicles in mixed traffic.
    Fu R; Li Z; Sun Q; Wang C
    Accid Anal Prev; 2019 Nov; 132():105260. PubMed ID: 31442924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of automated vehicles in mixed traffic: Evaluating changes in performance of following human-driven vehicles.
    Mahdinia I; Mohammadnazar A; Arvin R; Khattak AJ
    Accid Anal Prev; 2021 Mar; 152():106006. PubMed ID: 33556655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can we learn from autonomous vehicle collision data on crash severity? A cost-sensitive CART approach.
    Zhu S; Meng Q
    Accid Anal Prev; 2022 Sep; 174():106769. PubMed ID: 35858521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing an improved automatic preventive braking system based on safety-critical car-following events from naturalistic driving study data.
    Zhou W; Wang X; Glaser Y; Wu X; Xu X
    Accid Anal Prev; 2022 Dec; 178():106834. PubMed ID: 36150234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety-oriented automated vehicle longitudinal control considering both stability and damping behavior.
    Dai Y; Wang C; Xie Y
    Accid Anal Prev; 2024 Apr; 198():107486. PubMed ID: 38310835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safe, Efficient, and Comfortable Autonomous Driving Based on Cooperative Vehicle Infrastructure System.
    Chen J; Zhao C; Jiang S; Zhang X; Li Z; Du Y
    Int J Environ Res Public Health; 2023 Jan; 20(1):. PubMed ID: 36613215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Investigation into the Appropriateness of Car-Following Models in Assessing Autonomous Vehicles.
    Higatani A; Saleh W
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing investigation of automated vehicle crashes using text analytics of crash narratives and Bayesian analysis.
    Lee S; Arvin R; Khattak AJ
    Accid Anal Prev; 2023 Mar; 181():106932. PubMed ID: 36580765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety performance evaluation of freeway merging areas under autonomous vehicles environment using a co-simulation platform.
    Chen P; Ni H; Wang L; Yu G; Sun J
    Accid Anal Prev; 2024 May; 199():107530. PubMed ID: 38437756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal traffic conflict analysis of autonomous and traditional vehicle platoons in field tests via surrogate safety measures.
    Das T; Shoaib Samandar M; Rouphail N
    Accid Anal Prev; 2022 Nov; 177():106822. PubMed ID: 36103759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rear-end collision warning of connected automated vehicles based on a novel stochastic local multivehicle optimal velocity model.
    Wen J; Wu C; Zhang R; Xiao X; Nv N; Shi Y
    Accid Anal Prev; 2020 Dec; 148():105800. PubMed ID: 33128992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Machine Learning in Ethical Design of Autonomous Driving Crash Algorithms.
    Xiao Y
    Comput Intell Neurosci; 2022; 2022():2938011. PubMed ID: 36248938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Impacts of Autonomous Vehicles on Road Congestion Using Microsimulation.
    Malibari A; Higatani A; Saleh W
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of the intelligent control system of autonomous vehicles based on edge computing.
    Ming G
    PLoS One; 2023; 18(2):e0281294. PubMed ID: 36730359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case study of unavoidable accidents of autonomous vehicles.
    Sun Z; Lin M; Chen W; Dai B; Ying P; Zhou Q
    Traffic Inj Prev; 2024; 25(1):8-13. PubMed ID: 37722829
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.