These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35700718)

  • 1. Biological/metal oxide composite transport layers cast from green solvents for boosting light harvesting response of organic photovoltaic cells indoors.
    Dagar J; Brown TM
    Nanotechnology; 2022 Jul; 33(40):. PubMed ID: 35700718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer Acceptors Containing B←N Units for Organic Photovoltaics.
    Zhao R; Liu J; Wang L
    Acc Chem Res; 2020 Aug; 53(8):1557-1567. PubMed ID: 32692535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doping ZnO Electron Transport Layers with MoS
    Huang YJ; Chen HC; Lin HK; Wei KH
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):20196-20204. PubMed ID: 29783839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells.
    Dagar J; Scavia G; Scarselli M; Destri S; De Crescenzi M; Brown TM
    Nanoscale; 2017 Dec; 9(48):19031-19038. PubMed ID: 29186235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indoor Photovoltaics: Photoactive Material Selection, Greener Ink Formulations, and Slot-Die Coated Active Layers.
    Dayneko SV; Pahlevani M; Welch GC
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46017-46025. PubMed ID: 31725265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling.
    Farahat ME; Laventure A; Anderson MA; Mainville M; Tintori F; Leclerc M; Ratcliff EL; Welch GC
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43684-43693. PubMed ID: 32946216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.
    Courtright BA; Jenekhe SA
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26167-75. PubMed ID: 26550983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic photodiode with dual functions of indoor photovoltaic and high-speed photodetector.
    Kim TW; Kim SH; Shim JW; Hwang DK
    Front Optoelectron; 2022 Apr; 15(1):18. PubMed ID: 36637537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-processed zinc oxide/polyethylenimine nanocomposites as tunable electron transport layers for highly efficient bulk heterojunction polymer solar cells.
    Chen HC; Lin SW; Jiang JM; Su YW; Wei KH
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6273-81. PubMed ID: 25697544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of cation and anion dopant incorporated into a ZnO electron transporting layer for polymer bulk heterojunction solar cells.
    Kim S; Jeong J; Hoang QV; Han JW; Prasetio A; Jahandar M; Kim YH; Cho S; Chan Lim D
    RSC Adv; 2019 Nov; 9(65):37714-37723. PubMed ID: 35541802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1 cm
    Cui Y; Yao H; Zhang T; Hong L; Gao B; Xian K; Qin J; Hou J
    Adv Mater; 2019 Oct; 31(42):e1904512. PubMed ID: 31490601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doping ZnO with Water/Alcohol-Soluble Small Molecules as Electron Transport Layers for Inverted Polymer Solar Cells.
    Liu C; Zhang L; Xiao L; Peng X; Cao Y
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28225-28230. PubMed ID: 27696803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Over 19% Efficient Inverted Organic Photovoltaics Featuring a Molecularly Doped Metal Oxide Electron-Transporting Layer.
    Nugraha MI; Ling Z; Aniés F; Ardhi REA; Gedda M; Naphade D; Tsetseris L; Heeney M; Anthopoulos TD
    Adv Mater; 2024 Jun; ():e2310933. PubMed ID: 38949017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photodegradation.
    Kim G; Lim JW; Kim J; Yun SJ; Park MA
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27122-27130. PubMed ID: 32378875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light Management in Organic Photovoltaics Processed in Ambient Conditions Using ZnO Nanowire and Antireflection Layer with Nanocone Array.
    Tavakoli MM; Dastjerdi HT; Zhao J; Shulenberger KE; Carbonera C; Po R; Cominetti A; Bianchi G; Klein ND; Bawendi MG; Gradecak S; Kong J
    Small; 2019 Jun; 15(25):e1900508. PubMed ID: 31062932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Dimensional ZnO/CdS nanocomposite with high mobility as an efficient electron transport layer for inverted polymer solar cells.
    Wang Y; Fu H; Wang Y; Tan L; Chen L; Chen Y
    Phys Chem Chem Phys; 2016 Apr; 18(17):12175-82. PubMed ID: 27074904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers.
    Huang S; Kang B; Duan L; Zhang D
    J Colloid Interface Sci; 2021 Feb; 583():178-187. PubMed ID: 33002690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the Photovoltaic Performance of Organic Solar Cells for Indoor Light Harvesting.
    Cui M; Lv A; Ma Z
    Chemphyschem; 2022 May; 23(10):e202200091. PubMed ID: 35312206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-soaking free organic photovoltaic devices with sol-gel deposited ZnO and AZO electron transport layers.
    Jiang Z; Soltanian S; Gholamkhass B; Aljaafari A; Servati P
    RSC Adv; 2018 Oct; 8(64):36542-36548. PubMed ID: 35558932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Dual Microresonant Cavity and Plasmonic Effects to Enhance the Photovoltaic Efficiency of Flexible Polymer Solar Cells.
    Shen W; Zhao G; Zhang X; Bu F; Yun J; Tang J
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32429120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.