BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 35700843)

  • 1. Plant antimicrobial peptides: An overview about classification, toxicity and clinical applications.
    Lima AM; Azevedo MIG; Sousa LM; Oliveira NS; Andrade CR; Freitas CDT; Souza PFN
    Int J Biol Macromol; 2022 Aug; 214():10-21. PubMed ID: 35700843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant antimicrobial peptides: structures, functions, and applications.
    Li J; Hu S; Jian W; Xie C; Yang X
    Bot Stud; 2021 Apr; 62(1):5. PubMed ID: 33914180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress.
    Goyal RK; Mattoo AK
    Plant Sci; 2014 Nov; 228():135-49. PubMed ID: 25438794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification.
    Tang SS; Prodhan ZH; Biswas SK; Le CF; Sekaran SD
    Phytochemistry; 2018 Oct; 154():94-105. PubMed ID: 30031244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Defense peptides of plant immune system].
    Egorov TsA; Odintsova TI
    Bioorg Khim; 2012; 38(1):7-17. PubMed ID: 22792701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Overview of Databases and Bioinformatics Tools for Plant Antimicrobial Peptides.
    Quintans ILADCR; de Araújo JVA; Rocha LNM; de Andrade AEB; do Rêgo TG; Deyholos MK
    Curr Protein Pept Sci; 2022; 23(1):6-19. PubMed ID: 34951361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptides from Plants.
    Tam JP; Wang S; Wong KH; Tan WL
    Pharmaceuticals (Basel); 2015 Nov; 8(4):711-57. PubMed ID: 26580629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics-coupled molecular approaches for unravelling potential antimicrobial peptides coding genes in Brazilian native and crop plant species.
    Pestana-Calsa MC; Ribeiro IL; Calsa T
    Curr Protein Pept Sci; 2010 May; 11(3):199-209. PubMed ID: 20088767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications.
    Savitskaya A; Masso-Silva J; Haddaoui I; Enany S
    Biochimie; 2023 Nov; 214(Pt B):216-227. PubMed ID: 37499896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptides: features, applications and the potential use against covid-19.
    Mabrouk DM
    Mol Biol Rep; 2022 Oct; 49(10):10039-10050. PubMed ID: 35606604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Antimicrobial Peptide Genes Associated with Fungus and Insect Resistance in Maize.
    Noonan J; Williams WP; Shan X
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28914754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant antimicrobial peptides as potential anticancer agents.
    Guzmán-Rodríguez JJ; Ochoa-Zarzosa A; López-Gómez R; López-Meza JE
    Biomed Res Int; 2015; 2015():735087. PubMed ID: 25815333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications.
    Thakur A; Sharma A; Alajangi HK; Jaiswal PK; Lim YB; Singh G; Barnwal RP
    Int J Biol Macromol; 2022 Oct; 218():135-156. PubMed ID: 35868409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tools in the Era of Multidrug Resistance in Bacteria: Applications for New Antimicrobial Peptides Discovery.
    Moretta A; Scieuzo C; Salvia R; Popović ŽD; Sgambato A; Falabella P
    Curr Pharm Des; 2022; 28(35):2856-2866. PubMed ID: 35980058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era.
    Dos Santos-Silva CA; Zupin L; Oliveira-Lima M; Vilela LMB; Bezerra-Neto JP; Ferreira-Neto JR; Ferreira JDC; de Oliveira-Silva RL; Pires CJ; Aburjaile FF; de Oliveira MF; Kido EA; Crovella S; Benko-Iseppon AM
    Bioinform Biol Insights; 2020; 14():1177932220952739. PubMed ID: 32952397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens.
    Slezina MP; Istomina EA; Kulakovskaya EV; Korostyleva TV; Odintsova TI
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anticancer Potential of Antimicrobial Peptides: Focus on Buforins.
    Tolos Vasii AM; Moisa C; Dochia M; Popa C; Copolovici L; Copolovici DM
    Polymers (Basel); 2024 Mar; 16(6):. PubMed ID: 38543342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humanizing plant-derived snakins and their encrypted antimicrobial peptides.
    Ghanbarzadeh Z; Hemmati S; Mohagheghzadeh A
    Biochimie; 2022 Aug; 199():92-111. PubMed ID: 35472564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.
    Erdem Büyükkiraz M; Kesmen Z
    J Appl Microbiol; 2022 Mar; 132(3):1573-1596. PubMed ID: 34606679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy.
    Srivastava S; Dashora K; Ameta KL; Singh NP; El-Enshasy HA; Pagano MC; Hesham AE; Sharma GD; Sharma M; Bhargava A
    Phytother Res; 2021 Jan; 35(1):256-277. PubMed ID: 32940412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.