These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35701020)

  • 1. A video based benchmark data set (ENDOTEST) to evaluate computer-aided polyp detection systems.
    Fitting D; Krenzer A; Troya J; Banck M; Sudarevic B; Brand M; Böck W; Zoller WG; Rösch T; Puppe F; Meining A; Hann A
    Scand J Gastroenterol; 2022 Nov; 57(11):1397-1403. PubMed ID: 35701020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct comparison of multiple computer-aided polyp detection systems.
    Troya J; Sudarevic B; Krenzer A; Banck M; Brand M; Walter BM; Puppe F; Zoller WG; Meining A; Hann A
    Endoscopy; 2024 Jan; 56(1):63-69. PubMed ID: 37532115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frame-by-Frame Analysis of a Commercially Available Artificial Intelligence Polyp Detection System in Full-Length Colonoscopies.
    Brand M; Troya J; Krenzer A; De Maria C; Mehlhase N; Götze S; Walter B; Meining A; Hann A
    Digestion; 2022; 103(5):378-385. PubMed ID: 35767938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of a deep learning model to improve the usability of polyp detection systems during interventions.
    Brand M; Troya J; Krenzer A; Saßmannshausen Z; Zoller WG; Meining A; Lux TJ; Hann A
    United European Gastroenterol J; 2022 Jun; 10(5):477-484. PubMed ID: 35511456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyp detection with colonoscopy assisted by the GI Genius artificial intelligence endoscopy module compared with standard colonoscopy in routine colonoscopy practice (COLO-DETECT): a multicentre, open-label, parallel-arm, pragmatic randomised controlled trial.
    Seager A; Sharp L; Neilson LJ; Brand A; Hampton JS; Lee TJW; Evans R; Vale L; Whelpton J; Bestwick N; Rees CJ;
    Lancet Gastroenterol Hepatol; 2024 Oct; 9(10):911-923. PubMed ID: 39153491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and validation of a computer-assisted colonic polyp localization system based on deep learning.
    Zhao SB; Yang W; Wang SL; Pan P; Wang RD; Chang X; Sun ZQ; Fu XH; Shang H; Wu JR; Chen LZ; Chang J; Song P; Miao YL; He SX; Miao L; Jiang HQ; Wang W; Yang X; Dong YH; Lin H; Chen Y; Gao J; Meng QQ; Jin ZD; Li ZS; Bai Y
    World J Gastroenterol; 2021 Aug; 27(31):5232-5246. PubMed ID: 34497447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyp detection algorithm can detect small polyps: Ex vivo reading test compared with endoscopists.
    Guo Z; Nemoto D; Zhu X; Li Q; Aizawa M; Utano K; Isohata N; Endo S; Kawarai Lefor A; Togashi K
    Dig Endosc; 2021 Jan; 33(1):162-169. PubMed ID: 32173917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of User's Background Knowledge and Polyp Characteristics in Colonoscopy with Computer-Aided Detection.
    Lee J; Cho WS; Kim BS; Yoon D; Kim J; Song JH; Yang SY; Lim SH; Chung GE; Choi JM; Han YM; Kong HJ; Lee JC; Kim S; Bae JH
    Gut Liver; 2024 Sep; 18(5):857-866. PubMed ID: 39054913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-aided automated diminutive colonic polyp detection in colonoscopy by using deep machine learning system; first indigenous algorithm developed in India.
    Mazumdar S; Sinha S; Jha S; Jagtap B
    Indian J Gastroenterol; 2023 Apr; 42(2):226-232. PubMed ID: 37145230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking definitions of false-positive alerts during computer-aided polyp detection in colonoscopy.
    Holzwanger EA; Bilal M; Glissen Brown JR; Singh S; Becq A; Ernest-Suarez K; Berzin TM
    Endoscopy; 2021 Sep; 53(9):937-940. PubMed ID: 33137833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of Real-Time Computer-Aided Detection of Colorectal Neoplasia in a Randomized Trial.
    Repici A; Badalamenti M; Maselli R; Correale L; Radaelli F; Rondonotti E; Ferrara E; Spadaccini M; Alkandari A; Fugazza A; Anderloni A; Galtieri PA; Pellegatta G; Carrara S; Di Leo M; Craviotto V; Lamonaca L; Lorenzetti R; Andrealli A; Antonelli G; Wallace M; Sharma P; Rosch T; Hassan C
    Gastroenterology; 2020 Aug; 159(2):512-520.e7. PubMed ID: 32371116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyp detection and false-positive rates by computer-aided analysis of withdrawal-phase videos of colonoscopy of the right-sided colon segment in a randomized controlled trial comparing water exchange and air insufflation.
    Tang CP; Lin TL; Hsieh YH; Hsieh CH; Tseng CW; Leung FW
    Gastrointest Endosc; 2022 Jun; 95(6):1198-1206.e6. PubMed ID: 34973967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot study of a new freely available computer-aided polyp detection system in clinical practice.
    Lux TJ; Banck M; Saßmannshausen Z; Troya J; Krenzer A; Fitting D; Sudarevic B; Zoller WG; Puppe F; Meining A; Hann A
    Int J Colorectal Dis; 2022 Jun; 37(6):1349-1354. PubMed ID: 35543874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of real-time computer-aided detection of colorectal adenoma in routine colonoscopy (COLO-GENIUS): a single-centre randomised controlled trial.
    Karsenti D; Tharsis G; Perrot B; Cattan P; Percie du Sert A; Venezia F; Zrihen E; Gillet A; Lab JP; Tordjman G; Cavicchi M
    Lancet Gastroenterol Hepatol; 2023 Aug; 8(8):726-734. PubMed ID: 37269872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the number and relevance of false activations between 2 artificial intelligence computer-aided detection systems: the NOISE study.
    Spadaccini M; Hassan C; Alfarone L; Da Rio L; Maselli R; Carrara S; Galtieri PA; Pellegatta G; Fugazza A; Koleth G; Emmanuel J; Anderloni A; Mori Y; Wallace MB; Sharma P; Repici A
    Gastrointest Endosc; 2022 May; 95(5):975-981.e1. PubMed ID: 34995639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing clinical efficacy of polyp detection models using open-access datasets.
    Marchese Aizenman G; Salvagnini P; Cherubini A; Biffi C
    Front Oncol; 2024; 14():1422942. PubMed ID: 39148908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial).
    Glissen Brown JR; Mansour NM; Wang P; Chuchuca MA; Minchenberg SB; Chandnani M; Liu L; Gross SA; Sengupta N; Berzin TM
    Clin Gastroenterol Hepatol; 2022 Jul; 20(7):1499-1507.e4. PubMed ID: 34530161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time use of a computer-aided system for polyp detection during colonoscopy, an ambispective study.
    Shen P; Li WZ; Li JX; Pei ZC; Luo YX; Mu JB; Li W; Wang XM
    J Dig Dis; 2021 May; 22(5):256-262. PubMed ID: 33742774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time colorectal polyp detection using a novel computer-aided detection system (CADe): a feasibility study.
    Soons E; Rath T; Hazewinkel Y; van Dop WA; Esposito D; Testoni PA; Siersema PD
    Int J Colorectal Dis; 2022 Oct; 37(10):2219-2228. PubMed ID: 36163514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study.
    Wang P; Liu P; Glissen Brown JR; Berzin TM; Zhou G; Lei S; Liu X; Li L; Xiao X
    Gastroenterology; 2020 Oct; 159(4):1252-1261.e5. PubMed ID: 32562721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.