These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35701382)

  • 1. Coupled versus decoupled visuomotor feedback: Differential frontoparietal activity during curved reach planning on simultaneous functional near-infrared spectroscopy and electroencephalography.
    Le DT; Ogawa H; Tsuyuhara M; Watanabe K; Watanabe T; Ochi R; Nishijo H; Mihara M; Fujita N; Urakawa S
    Brain Behav; 2022 Jul; 12(7):e2681. PubMed ID: 35701382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoupling the actions of the eyes from the hand alters beta and gamma synchrony within SPL.
    Sayegh PF; Hawkins KM; Neagu B; Crawford JD; Hoffman KL; Sergio LE
    J Neurophysiol; 2014 Jun; 111(11):2210-21. PubMed ID: 24598517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Contribution of Different Cortical Regions to the Control of Spatially Decoupled Eye-Hand Coordination.
    Sayegh PF; Gorbet DJ; Hawkins KM; Hoffman KL; Sergio LE
    J Cogn Neurosci; 2017 Jul; 29(7):1194-1211. PubMed ID: 28253075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct contributions of human posterior parietal and dorsal premotor cortex to reach trajectory planning.
    Pilacinski A; Lindner A
    Sci Rep; 2019 Feb; 9(1):1962. PubMed ID: 30760821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual optimal attentional strategy during implicit motor learning boosts frontoparietal neural processing efficiency: A functional near-infrared spectroscopy study.
    Sakurada T; Hirai M; Watanabe E
    Brain Behav; 2019 Jan; 9(1):e01183. PubMed ID: 30520270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching.
    Filimon F; Nelson JD; Huang RS; Sereno MI
    J Neurosci; 2009 Mar; 29(9):2961-71. PubMed ID: 19261891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupled visually-guided reaching in optic ataxia: differences in motor control between canonical and non-canonical orientations in space.
    Granek JA; Pisella L; Stemberger J; Vighetto A; Rossetti Y; Sergio LE
    PLoS One; 2013; 8(12):e86138. PubMed ID: 24392035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG dynamics of the frontoparietal network during reaching preparation in humans.
    Naranjo JR; Brovelli A; Longo R; Budai R; Kristeva R; Battaglini PP
    Neuroimage; 2007 Feb; 34(4):1673-82. PubMed ID: 17196399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG; Begliomini C; Castiello U; Zorzi M
    Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task.
    Gertz H; Fiehler K
    J Neurophysiol; 2015 Jul; 114(1):170-83. PubMed ID: 25904714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Where one hand meets the other: limb-specific and action-dependent movement plans decoded from preparatory signals in single human frontoparietal brain areas.
    Gallivan JP; McLean DA; Flanagan JR; Culham JC
    J Neurosci; 2013 Jan; 33(5):1991-2008. PubMed ID: 23365237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Neural Variability in Premotor, Motor, and Posterior Parietal Cortex during Change of Motor Intention.
    Saberi-Moghadam S; Ferrari-Toniolo S; Ferraina S; Caminiti R; Battaglia-Mayer A
    J Neurosci; 2016 Apr; 36(16):4614-23. PubMed ID: 27098702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for both reaching and grasping activity in the medial parieto-occipital cortex of the macaque.
    Fattori P; Breveglieri R; Amoroso K; Galletti C
    Eur J Neurosci; 2004 Nov; 20(9):2457-66. PubMed ID: 15525286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks.
    Brovelli A; Badier JM; Bonini F; Bartolomei F; Coulon O; Auzias G
    J Neurosci; 2017 Jan; 37(4):839-853. PubMed ID: 28123020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visuomotor coordination and motor representation by human temporal lobe neurons.
    Tankus A; Fried I
    J Cogn Neurosci; 2012 Mar; 24(3):600-10. PubMed ID: 22066588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parieto-frontal coding of reaching: an integrated framework.
    Burnod Y; Baraduc P; Battaglia-Mayer A; Guigon E; Koechlin E; Ferraina S; Lacquaniti F; Caminiti R
    Exp Brain Res; 1999 Dec; 129(3):325-46. PubMed ID: 10591906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways.
    Tanné-Gariépy J; Rouiller EM; Boussaoud D
    Exp Brain Res; 2002 Jul; 145(1):91-103. PubMed ID: 12070749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex.
    Moisa M; Siebner HR; Pohmann R; Thielscher A
    J Neurosci; 2012 May; 32(21):7244-52. PubMed ID: 22623669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for distinct brain networks in the control of rule-based motor behavior.
    Granek JA; Sergio LE
    J Neurophysiol; 2015 Aug; 114(2):1298-309. PubMed ID: 26133796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.