These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35701431)

  • 1. A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization.
    Yu K; Dixon RA; Duan C
    Nat Commun; 2022 Jun; 13(1):3425. PubMed ID: 35701431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases.
    Jun JH; Xiao X; Rao X; Dixon RA
    Nat Plants; 2018 Dec; 4(12):1034-1043. PubMed ID: 30478357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VvLAR1 and VvLAR2 Are Bifunctional Enzymes for Proanthocyanidin Biosynthesis in Grapevine.
    Yu K; Jun JH; Duan C; Dixon RA
    Plant Physiol; 2019 Jul; 180(3):1362-1374. PubMed ID: 31092697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for leucoanthocyanidin reductase in the extension of proanthocyanidins.
    Liu C; Wang X; Shulaev V; Dixon RA
    Nat Plants; 2016 Nov; 2():16182. PubMed ID: 27869786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway.
    Jun JH; Lu N; Docampo-Palacios M; Wang X; Dixon RA
    Sci Adv; 2021 May; 7(20):. PubMed ID: 33990337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon.
    Monagas M; Gómez-Cordovés C; Bartolomé B; Laureano O; Ricardo da Silva JM
    J Agric Food Chem; 2003 Oct; 51(22):6475-81. PubMed ID: 14558765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.
    Liu Y; Shi Z; Maximova S; Payne MJ; Guiltinan MJ
    BMC Plant Biol; 2013 Dec; 13():202. PubMed ID: 24308601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins.
    Rinaldi A; Jourdes M; Teissedre PL; Moio L
    Food Chem; 2014 Dec; 164():142-9. PubMed ID: 24996317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula.
    Pang Y; Peel GJ; Wright E; Wang Z; Dixon RA
    Plant Physiol; 2007 Nov; 145(3):601-15. PubMed ID: 17885080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unconventional proanthocyanidin pathway in maize.
    Lu N; Jun JH; Li Y; Dixon RA
    Nat Commun; 2023 Jul; 14(1):4349. PubMed ID: 37468488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering.
    Pang Y; Abeysinghe IS; He J; He X; Huhman D; Mewan KM; Sumner LW; Yun J; Dixon RA
    Plant Physiol; 2013 Mar; 161(3):1103-16. PubMed ID: 23288883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
    Hammerbacher A; Paetz C; Wright LP; Fischer TC; Bohlmann J; Davis AJ; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Apr; 164(4):2107-22. PubMed ID: 24550241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavan-3-ols Are an Effective Chemical Defense against Rust Infection.
    Ullah C; Unsicker SB; Fellenberg C; Constabel CP; Schmidt A; Gershenzon J; Hammerbacher A
    Plant Physiol; 2017 Dec; 175(4):1560-1578. PubMed ID: 29070515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.
    Wang P; Zhang L; Jiang X; Dai X; Xu L; Li T; Xing D; Li Y; Li M; Gao L; Xia T
    Planta; 2018 Jan; 247(1):139-154. PubMed ID: 28887677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats.
    Tsang C; Auger C; Mullen W; Bornet A; Rouanet JM; Crozier A; Teissedre PL
    Br J Nutr; 2005 Aug; 94(2):170-81. PubMed ID: 16115350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Analysis of Metabolic Fluxes from Leucoanthocyanins to Anthocyanins and Proanthocyanidins (PAs).
    Wang P; Zhang L; Zhao L; Zhang X; Zhang H; Han Y; Jiang X; Liu Y; Gao L; Xia T
    J Agric Food Chem; 2020 Dec; 68(51):15142-15153. PubMed ID: 33307696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins.
    Wang P; Liu Y; Zhang L; Wang W; Hou H; Zhao Y; Jiang X; Yu J; Tan H; Wang Y; Xie DY; Gao L; Xia T
    Plant J; 2020 Jan; 101(1):18-36. PubMed ID: 31454118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
    Peng QZ; Zhu Y; Liu Z; Du C; Li KG; Xie DY
    Planta; 2012 Sep; 236(3):901-18. PubMed ID: 22678031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.